25,933 research outputs found
Specific heat and thermal conductivity of ferromagnetic magnons in Yttrium Iron Garnet
The specific heat and thermal conductivity of the insulating ferrimagnet
YFeO (Yttrium Iron Garnet, YIG) single crystal were measured
down to 50 mK. The ferromagnetic magnon specific heat shows a
characteristic dependence down to 0.77 K. Below 0.77 K, a downward
deviation is observed, which is attributed to the magnetic dipole-dipole
interaction with typical magnitude of 10 eV. The ferromagnetic magnon
thermal conductivity does not show the characteristic
dependence below 0.8 K. To fit the data, both magnetic defect
scattering effect and dipole-dipole interaction are taken into account. These
results complete our understanding of the thermodynamic and thermal transport
properties of the low-lying ferromagnetic magnons.Comment: 5 pages, 5 figure
Quantum criticality and nodal superconductivity in the FeAs-based superconductor KFe2As2
The in-plane resistivity and thermal conductivity of
FeAs-based superconductor KFeAs single crystal were measured down to 50
mK. We observe non-Fermi-liquid behavior at =
5 T, and the development of a Fermi liquid state with when
further increasing field. This suggests a field-induced quantum critical point,
occurring at the superconducting upper critical field . In zero field
there is a large residual linear term , and the field dependence of
mimics that in d-wave cuprate superconductors. This indicates that
the superconducting gaps in KFeAs have nodes, likely d-wave symmetry.
Such a nodal superconductivity is attributed to the antiferromagnetic spin
fluctuations near the quantum critical point.Comment: 4 pages, 4 figures - replaces arXiv:0909.485
Nodeless superconductivity in Ca3Ir4Sn13: evidence from quasiparticle heat transport
We report resistivity and thermal conductivity measurements
on CaIrSn single crystals, in which superconductivity with K was claimed to coexist with ferromagnetic spin-fluctuations. Among
three crystals, only one crystal shows a small hump in resistivity near 20 K,
which was previously attributed to the ferromagnetic spin-fluctuations. Other
two crystals show the Fermi-liquid behavior at low temperature.
For both single crystals with and without the resistivity anomaly, the residual
linear term is negligible in zero magnetic field. In low fields,
shows a slow field dependence. These results demonstrate that
the superconducting gap of CaIrSn is nodeless, thus rule out
nodal gap caused by ferromagnetic spin-fluctuations.Comment: 5 pages, 4 figure
Weakly coupled quantum spin singlets in BaCrO
Using single crystal inelastic neutron scattering with and without
application of an external magnetic field and powder neutron diffraction, we
have characterized magnetic interactions in BaCrO. Even without
field, we found that there exist three singlet-to-triplet excitation modes in
scattering plane. Our complete analysis shows that the three modes
are due to spatially anisotropic interdimer interactions that are induced by
local distortions of the tetrahedron of oxygens surrounding the Jahn-Teller
active Cr. The strong intradimer coupling of meV
and weak interdimer interactions ( meV) makes
BaCrO a good model system for weakly-coupled quantum spin
dimers
Scheme for remote implementation of partially unknown quantum operation of two qubits in cavity QED
By constructing the recovery operations of the protocol of remote
implementation of partially unknown quantum operation of two qubits [An Min
Wang: PRA, \textbf{74}, 032317(2006)], we present a scheme to implement it in
cavity QED. Long-lived Rydberg atoms are used as qubits, and the interaction
between the atoms and the field of cavity is a nonresonant one. Finally, we
analyze the experimental feasibility of this scheme.Comment: 7 pages, 2 figure
- …