117 research outputs found

    Optimal Distributed Beamforming for MISO Interference Channels

    Full text link
    We consider the problem of quantifying the Pareto optimal boundary in the achievable rate region over multiple-input single-output (MISO) interference channels, where the problem boils down to solving a sequence of convex feasibility problems after certain transformations. The feasibility problem is solved by two new distributed optimal beamforming algorithms, where the first one is to parallelize the computation based on the method of alternating projections, and the second one is to localize the computation based on the method of cyclic projections. Convergence proofs are established for both algorithms.Comment: 7 Pages, 6 figures, extended version for the one in Proceeding of Asilomar, CA, 201

    Super-reflection and Cloaking Based on Zero Index Metamaterial

    Full text link
    A zero index metamaterial (ZIM) can be utilized to block wave (super-reflection) or conceal objects completely (cloaking). The "super-reflection" device is realized by a ZIM with a perfect electric (magnetic) conductor inclusion of arbitrary shape and size for a transverse electric (magnetic) incident wave. In contrast, a ZIM with a perfect magnetic (electric) conductor inclusion for a transverse electric (magnetic) incident wave can be used to conceal objects of arbitrary shape. The underlying physics here is determined by the intrinsic properties of the ZIM

    Optimal Distributed Beamforming for MISO Interference Channels

    Get PDF
    In this thesis, the problem of quantifying the Pareto optimal boundary of the achievable rate region is considered over multiple-input single-output(MISO)interference channels, where the problem boils down to solving a sequence of convex feasibility problems after certain transformations. The feasibility problem is solved by two new distributed optimal beam forming algorithms, where the first one is to parallelize the computation based on the method of alternating projections, and the second one is to localize the computation based on the method of cyclic projections. Convergence proofs are established for both algorithms

    Progressive Neural Compression for Adaptive Image Offloading under Timing Constraints

    Full text link
    IoT devices are increasingly the source of data for machine learning (ML) applications running on edge servers. Data transmissions from devices to servers are often over local wireless networks whose bandwidth is not just limited but, more importantly, variable. Furthermore, in cyber-physical systems interacting with the physical environment, image offloading is also commonly subject to timing constraints. It is, therefore, important to develop an adaptive approach that maximizes the inference performance of ML applications under timing constraints and the resource constraints of IoT devices. In this paper, we use image classification as our target application and propose progressive neural compression (PNC) as an efficient solution to this problem. Although neural compression has been used to compress images for different ML applications, existing solutions often produce fixed-size outputs that are unsuitable for timing-constrained offloading over variable bandwidth. To address this limitation, we train a multi-objective rateless autoencoder that optimizes for multiple compression rates via stochastic taildrop to create a compression solution that produces features ordered according to their importance to inference performance. Features are then transmitted in that order based on available bandwidth, with classification ultimately performed using the (sub)set of features received by the deadline. We demonstrate the benefits of PNC over state-of-the-art neural compression approaches and traditional compression methods on a testbed comprising an IoT device and an edge server connected over a wireless network with varying bandwidth.Comment: IEEE the 44th Real-Time System Symposium (RTSS), 202

    Predicting Alzheimer's Disease by Hierarchical Graph Convolution from Positron Emission Tomography Imaging

    Full text link
    Imaging-based early diagnosis of Alzheimer Disease (AD) has become an effective approach, especially by using nuclear medicine imaging techniques such as Positron Emission Topography (PET). In various literature it has been found that PET images can be better modeled as signals (e.g. uptake of florbetapir) defined on a network (non-Euclidean) structure which is governed by its underlying graph patterns of pathological progression and metabolic connectivity. In order to effectively apply deep learning framework for PET image analysis to overcome its limitation on Euclidean grid, we develop a solution for 3D PET image representation and analysis under a generalized, graph-based CNN architecture (PETNet), which analyzes PET signals defined on a group-wise inferred graph structure. Computations in PETNet are defined in non-Euclidean, graph (network) domain, as it performs feature extraction by convolution operations on spectral-filtered signals on the graph and pooling operations based on hierarchical graph clustering. Effectiveness of the PETNet is evaluated on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset, which shows improved performance over both deep learning and other machine learning-based methods.Comment: Jiaming Guo, Wei Qiu and Xiang Li contribute equally to this wor
    corecore