98 research outputs found

    Antiviral activity of interleukin-11 as a response to porcine epidemic diarrhea virus infection

    Get PDF
    International audienceAbstractInterleukin-11 (IL-11), a well-known anti-inflammatory factor, provides protection from intestinal epithelium damage caused by physical or chemical factors. However, little is known of the role of IL-11 during viral infections. In this study, IL-11 expression at mRNA and protein levels were found to be high in Vero cells and the jejunum of piglets during porcine epidemic diarrhea virus (PEDV) infection, while IL-11 expression was found to be positively correlated with the level of viral infection. Pretreatment with recombinant porcine IL-11 (pIL-11) was found to suppress PEDV replication in Vero E6 cells, while IL-11 knockdown promoted viral infection. Furthermore, pIL-11 was found to inhibit viral infection by preventing PEDV-mediated apoptosis of cells by activating the IL-11/STAT3 signaling pathway. Conversely, application of a STAT3 phosphorylation inhibitor significantly antagonized the anti-apoptosis function of pIL-11 and counteracted its inhibition of PEDV. Our data suggest that IL-11 is a newfound PEDV-inducible cytokine, and its production enhances the anti-apoptosis ability of epithelial cells against PEDV infection. The potential of IL-11 to be used as a novel therapeutic against devastating viral diarrhea in piglets deserves more attention and study

    A stochastic linear-quadratic optimal control problem with jumps in an infinite horizon

    Get PDF
    In this paper, a stochastic linear-quadratic (LQ, for short) optimal control problem with jumps in an infinite horizon is studied, where the state system is a controlled linear stochastic differential equation containing affine term driven by a one-dimensional Brownian motion and a Poisson stochastic martingale measure, and the cost functional with respect to the state process and control process is quadratic and contains cross terms. Firstly, in order to ensure the well-posedness of our stochastic optimal control of infinite horizon with jumps, the L2 L^2 -stabilizability of our control system with jump is introduced. Secondly, it is proved that the L2 L^2 -stabilizability of our control system with jump is equivalent to the non-emptiness of the admissible control set for all initial state and is also equivalent to the existence of a positive solution to some integral algebraic Riccati equation (ARE, for short). Thirdly, the equivalence of the open-loop and closed-loop solvability of our infinite horizon optimal control problem with jumps is systematically studied. The corresponding equivalence is established by the existence of a stabilizing solution stabilizing\ solution of the associated generalized algebraic Riccati equation, which is different from the finite horizon case. Moreover, any open-loop optimal control for the initial state x x admiting a closed-loop representation is obatined

    Remora Optimization Algorithm Combining Joint Opposite Selection and Host Switching

    Get PDF
    The remora optimization algorithm (ROA) is a meta heuristic optimization algorithm proposed in 2021. It simulates the behavior of parasitic attachment to the host, empirical attack and host foraging in the ocean. The structure of ROA is simple and easy to implement, but the overall situation is slightly insufficient, which easily leads to ROA’s slow convergence speed and even difficult convergence in the later period. To solve the above problems, host switching mechanism is added in the exploration phase, and new host beluga is introduced to improve the exploration ability of original ROA. At the same time, through adding joint opposite selection strategy, the ability of the algorithm to jump out of the local optimum is enhanced, and the comprehensive optimization performance of the algorithm is further improved. Through the above improvements, an improved remora optim-ization algorithm (IROA) is proposed, which integrates the joint opposite selection and host switching mechanism. In order to verify the performance and improvement advantages of IROA, IROA is compared with the original ROA, six typical original algorithms and four improved algorithms on ROA. Experimental results of CEC2020 standard test function show that IROA has stronger optimization ability and higher convergence accuracy. Finally, the advantages and engineering applicability of the improved algorithm are further verified by solving the car crashworthiness design problem

    Tunable even- and odd-denominator fractional quantum Hall states in trilayer graphene

    Full text link
    The fractional quantum Hall (FQH) states are exotic quantum many-body phases whose elementary charged excitations are neither bosons nor fermions but anyons, obeying fractional braiding statistics. While most FQH states are believed to have Abelian anyons, the Moore-Read type states with even denominators, appearing at half filling of a Landau level (LL), are predicted to possess non-Abelian excitations with appealing potentials in topological quantum computation. These states, however, depend sensitively on the orbital contents of the single-particle LL wavefunction and the mixing between different LLs. Although they have been observed in a few materials, their non-Abelian statistics still awaits experimental confirmation. Here we show magnetotransport measurements on Bernal-stacked trilayer graphene (TLG), whose unique multiband structure facilitates the interlaced LL mixing, which can be controlled by external magnetic and displacement fields. We observe a series of robust FQH states including even-denominator ones at filling factors ν=9/2\nu=-9/2, 3/2-3/2, 3/23/2 and 9/29/2. In addition, we are able to finetune the LL mixing and crossings to drive quantum phase transitions of these half-filling states and their neighboring odd-denominator ones, exhibiting a related emerging and waning behavior. Our results establish TLG as a controllable system for tuning the weights of LL orbitals and mixing strength, and a fresh platform to seek for non-Abelian quasi-particles

    Association between dietary habits and the risk of migraine: a Mendelian randomization study

    Get PDF
    ObjectiveThe important contribution of dietary triggers to migraine pathogenesis has been recognized. However, the potential causal roles of many dietary habits on the risk of migraine in the whole population are still under debate. The objective of this study was to determine the potential causal association between dietary habits and the risk of migraine (and its subtypes) development, as well as the possible mediator roles of migraine risk factors.MethodsBased on summary statistics from large-scale genome-wide association studies, we conducted two-sample Mendelian randomization (MR) and bidirectional MR to investigate the potential causal associations between 83 dietary habits and migraine and its subtypes, and network MR was performed to explore the possible mediator roles of 8 migraine risk factors.ResultsAfter correcting for multiple testing, we found evidence for associations of genetically predicted coffee, cheese, oily fish, alcohol (red wine), raw vegetables, muesli, and wholemeal/wholegrain bread intake with decreased risk of migraine, those odds ratios ranged from 0.78 (95% CI: 0.63–0.95) for overall cheese intake to 0.61 (95% CI: 0.47–0.80) for drinks usually with meals among current drinkers (yes + it varies vs. no); while white bread, cornflakes/frosties, and poultry intake were positively associated with the risk of migraine. Additionally, genetic liability to white bread, wholemeal/wholegrain bread, muesli, alcohol (red wine), cheese, and oily fish intake were associated with a higher risk of insomnia and (or) major depression disorder (MDD), each of them may act as a mediator in the pathway from several dietary habits to migraine. Finally, we found evidence of a negative association between genetically predicted migraine and drinking types, and positive association between migraine and cups of tea per day.SignificanceOur study provides evidence about association between dietary habits and the risk of migraine and demonstrates that some associations are partly mediated through one or both insomnia and MDD. These results provide new insights for further nutritional interventions for migraine prevention

    Microbial Community Succession and Response to Environmental Variables During Cow Manure and Corn Straw Composting

    Get PDF
    In composting system, the composition of microbial communities is determined by the constant change in the physicochemical parameters. This study explored the dynamics of bacterial and fungal communities during cow manure and corn straw composting using high throughput sequencing technology. The relationships between physicochemical parameters and microbial community composition and abundance were also evaluated. The sequencing results revealed the major phyla included Proteobacteria, Bacteroidetes, Firmicutes, Chloroflexi and Actinobacteria, Ascomycota, and Basidiomycota. Linear discriminant analysis effect size (LEfSe) illustrated that Actinomycetales and Sordariomycetes were the indicators of bacteria and fungi in the maturation phase, respectively. Mantel test showed that NO3--N, NH4+-N, TN, C/N, temperature and moisture content significantly influenced bacterial community composition while only TN and moisture content had a significant effect on fungal community structure. Structural equation model (SEM) indicated that TN, NH4+-N, NO3--N and pH had a significant effect on fungal abundance while TN and temperature significantly affected bacterial abundance. Our finding increases the understanding of microbial community succession in cow manure and corn straw composting under natural conditions

    Two Scenario-Based Heuristics for Stochastic Shift Design Problem with Task-Based Demand

    No full text
    In this paper, we propose a deterministic shift design model with task-based demand and give the corresponding stochastic version with a probability constraint such that the shift plan designed is staffed with the workforce with a certain probability of performing all given tasks. Since we currently find no suitable methods for solving this stochastic model from the literature related to solving stochastic shift design models, we developed a single-stage heuristic method based on statistics, whose main idea is to reduce the occurrence of manpower shortage by prolonging the resource occupation time of a task, but this leads to a serious waste of resources, which is common in solving resource allocation problems with uncertain durations. To reduce the cost of wastage, we also propose a two-stage heuristic approach that is a two-stage heuristic with an evolutionary strategy. The two heuristics show their effectiveness in solving the proposed stochastic model in numerical experiments, and the two-stage heuristic significantly outperforms the one-stage heuristic in cost optimization and solution time stability
    corecore