127 research outputs found

    Comparative metagenomic analysis of microbial community compositions and functions in cage aquaculture and its nearby non-aquaculture environments

    Get PDF
    In the context of burgeoning global aquaculture, its environmental repercussions, particularly in marine ecosystems, have gained significant attentions. Cage aquaculture, a prominent method, has been observed to significantly influence marine environments by discharging substantial amounts of organic materials and pollutants. It is also one of the important reasons for water eutrophication. This study investigated the impacts of cage aquaculture on microbial diversity and functional potential using metagenomics. Specifically, a comparison was made of the physicochemical indicators and microbial diversity between three grouper aquaculture cage nets in Lingshui Xincun Port and three nearby non-aquaculture area surface waters. We found that compared to non-aquaculture areas, the eutrophication indicators in aquaculture environments significantly increased, and the abundances of Vibrio and Pseudoalteromonas in aquaculture environments significantly rose. Additionally, microbial functional genes related to carbon, nitrogen, and sulfur metabolisms were also found to be significantly affected by aquaculture activities. The correlation analysis between microbial populations and environmental factors revealed that the abundances of most microbial taxa showed positive correlations with dissolved inorganic nitrogen, soluble reactive phosphorus, NH4+, and negative correlations with dissolved oxygen. Overall, this study elucidated the significant impacts of aquaculture-induced eutrophication on the diversity and functions of planktonic bacterial communities

    Fish Cholesterol 25-Hydroxylase Inhibits Virus Replication via Regulating Interferon Immune Response or Affecting Virus Entry

    Get PDF
    Cholesterol 25-hydroxylase (CH25H) is an interferon (IFN)-induced gene that catalyzes the oxidation of cholesterol to 25-hydroxycholesterol (25HC), which exerts broad-spectrum antiviral function. To investigate the roles of fish CH25H in Singapore grouper iridovirus (SGIV) and red-spotted grouper nervous necrosis virus (RGNNV) infection, we cloned and characterized a CH25H homolog from orange-spotted grouper (Epinephelus coioides) (EcCH25H). EcCH25H encoded a 271-amino-acid polypeptide, with 86 and 59% homology with yellow croaker (Larimichthys crocea) and humans, respectively. EcCH25H contained a conserved fatty acid (FA) hydroxylase domain and an ERG3 domain. EcCH25H expression was induced by RGNNV or SGIV infection, lipopolysaccharide (LPS) or poly (I:C) treatment in vitro. Subcellular localization showed that EcCH25H and mutant EcCH25H-M were distributed in the cytoplasm and partly colocalized with the endoplasmic reticulum. SGIV and RGNNV replication was decreased by EcCH25H overexpression, which was reflected in the reduced severity of the cytopathic effect and a decrease in viral gene transcription, but replication of both viruses was increased by knockdown of EcCH25H. Besides, the antiviral activity was dependent on its enzymatic activity. Treatment with 25HC significantly inhibited replication of SGIV and RGNNV. EcCH25H overexpression positively regulated the IFN-related molecules and proinflammatory cytokines, and increased both IFN and ISRE promoter activities. Moreover, 25HC treatment significantly suppressed SGIV and RGNNV entry into host cells. The similar inhibitory effect on SGIV entry was observed in EcCH25H overexpression cells. Taken together, our findings demonstrated that EcCH25H inhibited SGIV and RGNNV infection by regulating IFN signaling molecules, and might also influence viral entry via an effect on cholesterol

    Fish Autophagy Protein 5 Exerts Negative Regulation on Antiviral Immune Response Against Iridovirus and Nodavirus

    Get PDF
    Autophagy is an important biological activity that maintains homeostasis in eukaryotic cells. However, little is known about the functions of fish autophagy-related genes (Atgs). In this study, we cloned and characterized Atg5, a key gene in the autophagy gene superfamily, from orange-spotted grouper (Epinephelus coioides) (EcAtg5). EcAtg5 encoded a 275-amino acid protein that shared 94 and 81% identity to seabass (Lates calcarifer) and humans (Homo sapiens), respectively. The transcription level of EcAtg5 was significantly increased in cells infected with red-spotted grouper nervous necrosis virus (RGNNV). In cells infected with Singapore grouper iridovirus (SGIV), EcAtg5 expression declined during the early stage of infection and increased in the late stage. Fluorescence microscopy revealed that EcAtg5 mainly localized with a dot-like pattern in the cytoplasm of grouper cells. Overexpression of EcAtg5 significantly increased the replication of RGNNV and SGIV at different levels of detection, as indicated by increased severity of the cytopathic effect, transcription levels of viral genes, and levels of viral proteins. Knockdown of EcAtg5 decreased the replication of RGNNV and SGIV. Further studies showed that overexpression EcAtg5 activated autophagy, decreased expression levels of interferon related cytokines or effectors and pro-inflammatory factors, and inhibited the activation of nuclear factor κB, IFN-sensitive response element, and IFNs. In addition, ectopic expression of EcAtg5 affected cell cycle progression by hindering the G1/S transition. Taken together, our results demonstrated that fish Atg5 exerted a crucial role in virus replication by promoting autophagy, down-regulating antiviral IFN responses, and affecting the cell cycle

    Nanopore-patterned CuSe drives the realization of PbSe-CuSe lateral heterostructure

    Full text link
    Monolayer PbSe has been predicted to be a two-dimensional (2D) topological crystalline insulator (TCI) with crystalline symmetry-protected Dirac-cone-like edge states. Recently, few-layered epitaxial PbSe has been grown on the SrTiO3 substrate successfully, but the corresponding signature of the TCI was only observed for films not thinner than seven monolayers, largely due to interfacial strain. Here, we demonstrate a two-step method based on molecular beam epitaxy for the growth of the PbSe-CuSe lateral heterostructure on the Cu(111) substrate, in which we observe a nanopore patterned CuSe layer that acts as the template for lateral epitaxial growth of PbSe. This further results in a monolayer PbSe-CuSe lateral heterostructure with an atomically sharp interface. Scanning tunneling microscopy and spectroscopy measurements reveal a four-fold symmetric square lattice of such monolayer PbSe with a quasi-particle band gap of 1.8 eV, a value highly comparable with the theoretical value of freestanding PbSe. The weak monolayer-substrate interaction is further supported by both density functional theory (DFT) and projected crystal orbital Hamilton population, with the former predicting the monolayer's anti-bond state to reside below the Fermi level. Our work demonstrates a practical strategy to fabricate a high-quality in-plane heterostructure, involving a monolayer TCI, which is viable for further exploration of the topology-derived quantum physics and phenomena in the monolayer limit.Comment: 26 pagres, 6 Figure

    ICTV Virus Taxonomy Profile: Iridoviridae

    Get PDF
    The Iridoviridae is a family of large, icosahedral viruses with double-stranded DNA genomes ranging in size from 103 to 220 kbp. Members of the subfamily Alphairidovirinae infect ectothermic vertebrates (bony fish, amphibians and reptiles), whereas members of the subfamily Betairidovirinae mainly infect insects and crustaceans. Infections can be either covert or patent, and in vertebrates they can lead to high levels of mortality among commercially and ecologically important fish and amphibians. This is a summary of the current International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the Iridoviridae, which is available at www.ictv.global/report/iridoviridae.</p
    corecore