163 research outputs found
Comparative Analysis of Clinical Epidemiology and Pathological Characteristics of 908 Patients with Primary Lung Cancer of Hunan Province in 1997 and 2007
Background and objective Epidemiology of lung cancer will be changed along with time and region. The aim of this study is to acknowledge the tendency of primary lung cancer in hunan province in recent years by comparing and analyzing the distribution of gender, age, area, smoking and pathology of patients who were initial diagnosed lung cancer and ancestral or permanent residence of hunan province in 1997 and 2007. Methods Clinical data of 908 patients with primary lung cancer hospitalized in Xiangya hospital were collected and evaluated. Results Compared patients in 2007 with those in 1997, ratio between male and female dropped from 3.8:1 to 2.98:1, while the proportion of young patients who were under 40 years old raised from 4.4% to 8.6% (χ2=4.465, P=0.035), patients living in the county raised from 19.9% to 40.1% (χ2=30.670, P < 0.001), smoking rate of patients from county raised from 16.9% to 39.9% (χ2= 24.939, P < 0.01). In addition, the proportion of rare histological types of lung cancer were also increased from 1.3% to 4.5% (χ2= 5.142, P=0.023). Conclusion Female patients, young patients, rural patients and rare histological types of lung cancer may have a tendency of increase in hunan province in recent years, whereas smoking cessation education should be strengthened
CG-fusion CAM: Online segmentation of laser-induced damage on large-aperture optics
Online segmentation of laser-induced damage on large-aperture optics in
high-power laser facilities is challenged by complicated damage morphology,
uneven illumination and stray light interference. Fully supervised semantic
segmentation algorithms have achieved state-of-the-art performance, but rely on
plenty of pixel-level labels, which are time-consuming and labor-consuming to
produce. LayerCAM, an advanced weakly supervised semantic segmentation
algorithm, can generate pixel-accurate results using only image-level labels,
but its scattered and partially under-activated class activation regions
degrade segmentation performance. In this paper, we propose a weakly supervised
semantic segmentation method with Continuous Gradient CAM and its nonlinear
multi-scale fusion (CG-fusion CAM). The method redesigns the way of
back-propagating gradients and non-linearly activates the multi-scale fused
heatmaps to generate more fine-grained class activation maps with appropriate
activation degree for different sizes of damage sites. Experiments on our
dataset show that the proposed method can achieve segmentation performance
comparable to that of fully supervised algorithms
Integrated radiative and evaporative cooling beyond daytime passive cooling power limit
Radiative cooling technologies can passively gain lower temperature than that of ambient surroundings without consuming electricity, which has emerged as potential alternatives to traditional cooling methods. However, the limitations in daytime radiation intensity with a net cooling power of less than 150 W·m−2 have hindered progress toward commercial practicality. Here, we report an integrated radiative and evaporative chiller (IREC) based on polyacrylamide hydrogels combined with an upper layer of breathable poly(vinylidene fluoride-co-trifluoroethylene) fibers, which achieves a record high practical average daytime cooling power of 710 W·m−2. The breathable fiber layer has an average emissivity of over 76% in the atmospheric window, while reflecting 90% of visible light. This IREC possesses effective daytime radiative cooling while simultaneously ensuring evaporative cooling capability, enhancing daytime passive cooling effectively. As a result, IREC presents the practicability for both personal cooling managements and industrial auxiliary cooling applications. An IREC-based patch can assist in cooling human body by 13 °C low for a long term and biocompatible use, and IREC can maintain the temperature of industrial storage facilities such as oil tanks at room temperature even under strong sunlight irradiation. This work delivers the highest performance daytime passive cooling by simultaneous infrared radiation and water evaporation, and provides a new perspective for developing highly efficient, scalable, and affordable passive cooling strategy
StMAPKK5 responds to heat stress by regulating potato growth, photosynthesis, and antioxidant defenses
BackgroundsAs a conserved signaling pathway, mitogen-activated protein kinase (MAPK) cascade regulates cellular signaling in response to abiotic stress. High temperature may contribute to a significant decrease in economic yield. However, research into the expression patterns of StMAPKK family genes under high temperature is limited and lacks experimental validation regarding their role in supporting potato plant growth.MethodsTo trigger heat stress responses, potato plants were grown at 35°C. qRT-PCR was conducted to analyze the expression pattern of StMAPKK family genes in potato plants. Plant with StMAPKK5 loss-of-function and gain-of-function were developed. Potato growth and morphological features were assessed through measures of plant height, dry weight, and fresh weight. The antioxidant ability of StMAPKK5 was indicated by antioxidant enzyme activity and H2O2 content. Cell membrane integrity and permeability were suggested by relative electrical conductivity (REC), and contents of MDA and proline. Photosynthetic capacity was next determined. Further, mRNA expression of heat stress-responsive genes and antioxidant enzyme genes was examined.ResultsIn reaction to heat stress, the expression profiles of StMAPKK family genes were changed. The StMAPKK5 protein is located to the nucleus, cytoplasm and cytomembrane, playing a role in controlling the height and weight of potato plants under heat stress conditions. StMAPKK5 over-expression promoted photosynthesis and maintained cell membrane integrity, while inhibited transpiration and stomatal conductance under heat stress. Overexpression of StMAPKK5 triggered biochemical defenses in potato plant against heat stress, modulating the levels of H2O2, MDA and proline, as well as the antioxidant activities of CAT, SOD and POD. Overexpression of StMAPKK5 elicited genetic responses in potato plants to heat stress, affecting heat stress-responsive genes and genes encoding antioxidant enzymes.ConclusionStMAPKK5 can improve the resilience of potato plants to heat stress-induced damage, offering a promising approach for engineering potatoes with enhanced adaptability to challenging heat stress conditions
Entanglement of single-photons and chiral phonons in atomically thin WSe
Quantum entanglement is a fundamental phenomenon which, on the one hand,
reveals deep connections between quantum mechanics, gravity and the space-time;
on the other hand, has practical applications as a key resource in quantum
information processing. While it is routinely achieved in photon-atom
ensembles, entanglement involving the solid-state or macroscopic objects
remains challenging albeit promising for both fundamental physics and
technological applications. Here, we report entanglement between collective,
chiral vibrations in two-dimensional (2D) WSe host --- chiral phonons (CPs)
--- and single-photons emitted from quantum dots (QDs) present in it. CPs which
carry angular momentum were recently observed in WSe and are a
distinguishing feature of the underlying honeycomb lattice. The entanglement
results from a "which-way" scattering process, involving an optical excitation
in a QD and doubly-degenerate CPs, which takes place via two indistinguishable
paths. Our unveiling of entanglement involving a macroscopic, collective
excitation together with strong interaction between CPs and QDs in 2D materials
opens up ways for phonon-driven entanglement of QDs and engineering chiral or
non-reciprocal interactions at the single-photon level
A multi-wavelength mid-IR laser based on BaGa4Se7 optical parametric oscillators
A multi-wavelength mid-IR laser consisting of 3.05 μm, 4.25 μm, and 5.47 μm BaGa4Se7(BGSe)optical parametric oscillators (OPOs) switched by DKDP electro-optic switches with one 10 Hz/7.6 ns pumping wave is demonstrated. Maximum energies at 3.05 μm, 4.25 μm, and 5.47 μm are 1.35 mJ, 1.03 mJ, and 0.56 mJ, respectively, corresponding to optical-to-optical conversion efficiencies of 9.4%, 7.6%, and 4.2%. To the best of our knowledge, this study is the first of generation of three mid-IR wavelength lasers using electro-optic switches. Furthermore, this study provides a viable solution for a high-energy or high-power, compact, or even portable multi-wavelength mid-IR laser device that employs a single pumping wave
- …