15 research outputs found

    High Expression of Cancer-Derived Glycosylated Immunoglobulin G Predicts Poor Prognosis in Pancreatic Ductal Adenocarcinoma.

    Get PDF
    Background: Cancer-derived immunoglobulin G (CIgG) has been detected in various cancers and plays important roles in carcinogenesis. The present study aimed to investigate its clinical significance in pancreatic ductal adenocarcinoma (PDAC). Methods: Using tissue microarrays (TMAs) and immunohistochemistry, we assessed CIgG expression in 326 patients who underwent surgical resection for PDAC. The associations between CIgG expression and clinicopathological features and clinical outcomes were analyzed. Functional experiments were also performed to investigate the effect of CIgG on PDAC cells. Results: High CIgG expression was related to poor tumor differentiation and metastasis during follow-up and was associated with poor disease-free survival (DFS) and overall survival (OS). A multivariate Cox regression analysis identified high CIgG expression as an independent prognostic factor for DFS and OS. The incorporation of CIgG expression improved the accuracy of an established prognosis prediction model for 1-year OS and 2-year OS. In vitro studies showed that knocking down CIgG profoundly suppressed the proliferation, migration, and invasion capacity of PDAC cells. Conclusions: CIgG contributes to the malignant behaviors of PDAC and offers a powerful prognostic predictor for these patients

    An Analysis of the Artistic Characteristics of Dances in Dunhuang Murals

    No full text
    Dunhuang art is regarded as a great miracle and treasure in the traditional culture and art of the Chinese nation, with the murals in Dunhuang Mogao Grottoes as the main component. Dunhuang dance is not only one of the important components of Dunhuang murals but also embodies rich content and various expressive techniques. In the long process of development, it gradually formed a unique style. Based on this, taking Dunhuang dance as the research object and combining it with the existing research results, this paper aims to explore the performance techniques and characteristics of Dunhuang dance patterns in China's ancient dance from two perspectives, including its style and characteristics, as well as its artistic characteristics in the dance images of Dunhuang murals, and to ponder over how to inject valuable new vitality into the precious heritage left by ancestors

    High-Performance PdNi Nanoalloy Catalyst in Situ Structured on Ni Foam for Catalytic Deoxygenation of Coalbed Methane: Experimental and DFT Studies

    No full text
    A Ni-foam-structured PdNi nanoalloy catalyst engineered from nano- to macro-scales has been successfully fabricated for the catalytic deoxygenation of coalbed methane (CBM). The catalyst was obtainable by embedment of Pd nanoparticles onto Ni-foam substrate via a galvanic exchange reaction method and subsequent in situ activation in the reaction, which was active at low temperature, selective (no CO formation), and oscillation free in this CH<sub>4</sub>-rich catalytic combustion process. Special Pd@NiO (Pd nanoparticles partially wrapped by tiny NiO fragments) ensembles were formed in the galvanic deposition stage and could merely be transformed into PdNi nanoalloys in the real reaction stream at elevated temperatures (e.g., 450 °C or higher). Density functional theory (DFT) calculations were carried out to reveal the role of Ni decoration at Pd in PdNi nanoalloy catalyst for the CBM deoxygenation. By nature, the Pd–Ni alloying modified the electronic structure of surface Pd and led to a decrease in the O adsorption energy, which can be taken as the activity descriptor for the CBM deoxygenation. A reaction kinetic study indicated that the Ni decoration at Pd by Pd–Ni alloying lowered the apparent activation energy in comparison to the pristine Pd catalyst, while leading to an increase of the reaction order of O<sub>2</sub> from −0.6 at Pd catalyst to −0.3. The foam-structured PdNi nanoalloy catalyst thus offered enhanced low-temperature activity and the elimination of oscillating phenomena as the result of a transient balance obtained between the cycles of O<sub>2</sub> adsorption/activation and CH<sub>4</sub> oxidation
    corecore