18 research outputs found

    A Retrospective Study of Preferable Alternative Route to Right Internal Jugular Vein for Placing Tunneled Dialysis Catheters: Right External Jugular Vein versus Left Internal Jugular Vein.

    No full text
    Right internal jugular vein (IJV) is a preferred access route for tunneled (cuffed) dialysis catheters (TDCs), and both right external jugular vein (EJV) and left IJV are alternative routes for patients in case the right IJV isn't available for TDC placement. This retrospective study aimed to determine if a disparity exists between the two alternative routes in hemodialysis patients in terms of outcomes of TDCs.49 hemodialysis patients who required TDCs through right EJV (n = 21) or left IJV (n = 28) as long-term vascular access were included in this study. The primary end point was cumulative catheter patency. Secondary end points include primary catheter patency, proportion of patients that never required urokinase and incidence of catheter-related bloodstream infections (CRBSI).A total of 20,870 catheter-days were evaluated and the median was 384 (interquartile range, 262-605) catheter-days. Fewer catheters were removed in the right EJV group than in the left IJV group (P = 0.007). Mean cumulative catheter patency was higher in the right EJV group compared with the left IJV group (P = 0.031). There was no significant difference between the two groups in the incidence of CRBSI, primary catheter patency or proportion of patients that never required urokinase use. Total indwell time of antecedent catheters was identified as an independent risk factor for cumulative catheter patency by Cox regression hazards test with an HR of 2.212 (95% CI, 1.363-3.588; p = 0.001).Right EJV might be superior to left IJV as an alternative insertion route for TDC placement in hemodialysis patients whose right IJVs are unavailable

    GSK-3β and Vitamin D Receptor are Involved in β-Catenin and Snail Signaling in High Glucose-Induced Epithelial-Mesenchymal Transition of Mouse Podocytes

    No full text
    Background: Epithelial-mesenchymal transition (EMT) is recognized to play an important role in diabetic nephropathy (DN). Objective: To analyze the roles of glycogen synthase kinase 3β (GSK-3β), β-catenin and Snail signaling in high glucose (HG)-induced mouse podocytes EMT. Methods: Differentiated podocytes were divided into: the normal glucose group (NG: glucose 5.6mM), the HG groups (12.5HG: 12.5mM; 25HG: 25mM; and 50HG: 50mM of glucose), and the osmotic control group (NG+M: glucose 5.6mM and mannitol 44.4mM). GSK-3β, β-catenin and Snail were assessed using semi-quantitative RT-PCR, western blot and immunofluorescence. β-catenin and Snail pathways were assessed after down-regulating GSK-3β expression using an inhibitor (LiCl) or a small-interfering RNA (siRNA). Results: HG increased GSK-3β, β-catenin and Snail expressions, and promoted EMT, as shown by decreased nephrin expression (epithelial marker), and increased α-SMA expression (mesenchymal marker). GSK-3β inhibitor and GSK-3β siRNA decreased β-catenin and Snail expressions, and reversed HG-induced EMT. Immunofluorescence showed that GSK-3β and β-catenin did not completely overlap; β-catenin was transferred to the nucleus in the 25HG group. VDR seems to be involved in HG-induced β-catenin nuclear translocation. Conclusion: Down-regulating GSK-3β expression decreased β-catenin and Snail expression and reversed HG-induced podocytes EMT. Thus, modulating GSK-3β might be a target to slow or prevent DN

    miR-193a as a potential mediator of WT-1/synaptopodin in the renoprotective effect of losartan on diabetic kidney

    No full text
    Diabetic nephropathy (DN) is the most common complication of diabetic patients, and has become a global healthcare problem. In this study, we used diabetic mice to evaluate the effect of Losartan on diabetic nephropathy, in which the experimental animals were divided into three groups: non-diabetic mice (db/m group), untreated-diabetic mice (db/db group), and Losartan-treated diabetic mice (db/db-losartan). Next, immunohistochemistry and immunofluorescence were used to detect WT-1 and synaptopodin expression, respectively. Protein levels of WT-1, synaptopodin, claudin1, and Pax-2 were assessed by Western blotting and real-time PCR. The miR-193a mRNA levels were quantitated by real-time PCR. The results showed that albuminuria was increased in diabetic mice compared with control animals and was significantly ameliorated by treatment with Losartan. In addition, Losartan significantly upregulated the immunopositive cell numbers of WT-1, the expression of WT-1 and synaptopodin in renal tissue. By contrast, expression of claudin1 and Pax-2 in renal tissue were decreased in db/db-losartan group. Besides, expression of miR-193a was decreased significantly in db/db-losartan group compared to the untreated diabetic group. Thus, Losartan has renoprotective effects on the control of tissue damage possibly by inhibiting the expression of miR-193a, thereby promoting the repair of podocyte injury in mice with diabetic nephropathy.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    VDR Activation Attenuates Renal Tubular Epithelial Cell Ferroptosis by Regulating Nrf2/HO‐1 Signaling Pathway in Diabetic Nephropathy

    No full text
    Abstract Diabetic nephropathy (DN) is a serious microvascular complication of diabetes. Ferroptosis, a new form of cell death, plays a crucial role in the pathogenesis of DN. Renal tubular injury triggered by ferroptosis might be essential in this process. Numerous studies demonstrate that the vitamin D receptor (VDR) exerts beneficial effects by suppressing ferroptosis. However, the underlying mechanism has not been fully elucidated. Thus, they verified the nephroprotective effect of VDR activation and explored the mechanism by which VDR activation suppressed ferroptosis in db/db mice and high glucose‐cultured proximal tubular epithelial cells (PTECs). Paricalcitol (PAR) is a VDR agonist that can mitigate kidney injury and prevent renal dysfunction. PAR treatment could inhibit ferroptosis of PTECs through decreasing iron content, increasing glutathione (GSH) levels, reducing malondialdehyde (MDA) generation, decreasing the expression of positive ferroptosis mediator transferrin receptor 1 (TFR‐1), and enhancing the expression of negative ferroptosis mediators including ferritin heavy chain (FTH‐1), glutathione peroxidase 4 (GPX4), and cystine/glutamate antiporter solute carrier family 7 member 11 (SLC7A11). Mechanistically, VDR activation upregulated the NFE2‐related factor 2/heme oxygenase‐1 (Nrf2/HO‐1) signaling pathway to suppress ferroptosis in PTECs. These findings suggested that VDR activation inhibited ferroptosis of PTECs in DN via modulating the Nrf2/HO‐1 signaling pathway

    Kaplan-Meier curve of primary catheter patency.

    No full text
    <p>Patients with TDCs through left IJV (Blue, n = 28) were compared with those through right EJV (purple, n = 21). TDCs, tunneled cuffed dialysis catheters; IJV, internal jugular vein; EJV, external jugular vein.</p

    MC1R is dispensable for the proteinuria reducing and glomerular protective effect of melanocortin therapy

    No full text
    Melanocortin therapy by using adrenocorticotropic hormone (ACTH) or non-steroidogenic melanocortin peptides attenuates proteinuria and glomerular injury in experimental glomerular diseases and induces remission of nephrotic syndrome in patients with diverse glomerulopathies, even those resistant to steroids. The underlying mechanism remains elusive, but the role of melanocortin 1 receptor (MC1R) has been implicated and was examined here. Four patients with congenital red hair color and nephrotic syndrome caused by idiopathic membranous nephropathy or focal segmental glomerulosclerosis were confirmed by gene sequencing to bear dominant-negative MC1R mutations. Despite prior corticosteroid resistance, all patients responded to ACTH monotherapy and ultimately achieved clinical remission, inferring a steroidogenic-independent and MC1R-dispensable anti-proteinuric effect of melanocortin signaling. In confirmatory animal studies, the protective effect of [Nle4, D-Phe7 ]-α-melanocyte stimulating hormone (NDP-MSH), a potent non-steroidogenic pan-melanocortin receptor agonist, on the lipopolysaccharide elicited podocytopathy was completely preserved in MC1R-null mice, marked by reduced albuminuria and diminished histologic signs of podocyte injury. Moreover, in complementary in vitro studies, NDP-MSH attenuated the lipopolysaccharide elicited apoptosis, hypermotility and impairment of filtration barrier function equally in primary podocytes derived from MC1R-null and wild-type mice. Collectively, our findings suggest that melanocortin therapy confers a proteinuria reducing and podoprotective effect in proteinuric glomerulopathies via MC1R-independent mechanisms

    Kaplan-Meier curve of cumulative catheter patency.

    No full text
    <p>Patients with TDCs through left IJV (Blue, n = 28) were compared with those through right EJV (purple, n = 21). TDCs, tunneled cuffed dialysis catheters; IJV, internal jugular vein; EJV, external jugular vein.</p

    Study diagram.

    No full text
    <p>Abbreviations: IJV, internal jugular vein; EJV, external jugular vein; VA, vascular access; TDCs, tunneled cuffed dialysis catheters.</p

    Vitamin D protects podocytes from autoantibodies induced injury in lupus nephritis by reducing aberrant autophagy

    No full text
    Abstract Subject The aim of this study was to investigate whether vitamin D plays a protective role in podocyte injury induced by autoantibodies purified from the serum of patients with lupus nephritis (LN) via reducing aberrant autophagy. Methods Autophagic activities of renal tissues of patients with LN were evaluated under transmission electronic microscope (TEM). Immunoglobulin G (IgG) from patients with LN was purified to induce human podocyte injury, and the role of vitamin D in injury was observed. Podocytes were observed under TEM, autophagic activity was evaluated by western blot analysis and quantitative real-time polymerase chain reaction, and mRFP-GFP-LC3B adenovirus was infected into human podocytes in vitro. Results Significantly higher autophagic levels were observed in patients with LN (P <0.05), and apparently greater autophagic levels in podocytes were shown (P <0.05). Among different classifications of LN, class V (n = 5), III + V (n = 5), and IV + V (n = 5) gained higher autophagic levels than class III (n = 5) and IV (n = 5). Induced autophagy, which was evident by increased LC3B-II and Beclin 1 level, caused consumption of p62, more autophagosomes observed under TEM, and more LC3B dots observed under confocal microscope in the IgG group, along with decreased nephrin expression, which suggests podocyte injury. Reduction of autophagy as well as alleviated podocyte injury was observed in the IgG+ vitamin D group. Conclusion This study demonstrates that vitamin D plays a protective role in podocyte injury induced by autoantibodies from patients with LN and appears to be a novel therapy target in LN
    corecore