72 research outputs found

    Application of different watershed units to debris flow susceptibility mapping: A case study of Northeast China

    Get PDF
    The main purpose of this study was to compare two types of watershed units divided by the hydrological analysis method (HWUs) and mean curvature method (CWUs) for debris flow susceptibility mapping (DFSM) in Northeast China. Firstly, a debris flow inventory map consisting of 129 debris flows and 129 non-debris flows was randomly divided into a ratio of 70% and 30% for training and testing. Secondly, 13 influencing factors were selected and the correlations between these factors and the debris flows were determined by frequency ration analysis. Then, two types of watershed units (HWUs and CWUs) were divided and logistic regression (LR), multilayer perceptron (MLP), classification and regression tree (CART) and Bayesian network (BN) were selected as the evaluation models. Finally, the predictive capabilities of the models were verified using the predictive accuracy (ACC), the Kappa coefficient and the area under the receiver operating characteristic curve (AUC). The mean AUC, ACC and Kappa of four models (LR, MLP, CART and BN) in the training stage were 0.977, 0.931, and 0.861, respectively, for the HWUs, while 0.961, 0.905, and 0.810, respectively, for the CWUs; in the testing stage, were 0.904, 0.818, and 0.635, respectively, for the HWUs, while 0.883, 0.800, and 0.601, respectively, for the CWUs, which showed that HWU model has a higher debris flow prediction performance compared with the CWU model. The CWU-based model can reflect the spatial distribution probability of debris flows in the study area overall and can be used as an alternative model

    Deciphering the role of female reproductive tract microbiome in reproductive health: a review

    Get PDF
    Relevant studies increasingly indicate that female reproductive health is confronted with substantial challenges. Emerging research has revealed that the microbiome interacts with the anatomy, histology, and immunity of the female reproductive tract, which are the cornerstone of maintaining female reproductive health and preventing adverse pregnancy outcomes. Currently, the precise mechanisms underlying their interaction and impact on physiological functions of the reproductive tract remain elusive, constituting a prominent area of investigation within the field of female reproductive tract microecology. From this new perspective, we explore the mechanisms of interactions between the microbiome and the anatomy, histology, and immunity of the female reproductive tract, factors that affect the composition of the microbiome in the female reproductive tract, as well as personalized medicine approaches in managing female reproductive tract health based on the microbiome. This study highlights the pivotal role of the female reproductive tract microbiome in maintaining reproductive health and influencing the occurrence of reproductive tract diseases. These findings support the exploration of innovative approaches for the prevention, monitoring and treatment of female reproductive tract diseases based on the microbiome

    A NOTE ON THE -SUPERSOLUBILITY OF FINITE GROUPS

    No full text

    Characterization of two keystone taxa, sulfur-oxidizing, and nitrate-reducing bacteria, by tracking their role transitions in the benzo[a]pyrene degradative microbiome

    No full text
    Abstract Background Keystone taxa are drivers of microbiome structure and functioning, which may play critical roles in microbiome-level responses to recalcitrant pollution and are a key to bioremediation. However, the characterization and manipulation of such taxa is a major challenge due to the complexity of microbial communities and rapid turnover in both time and space. Here, microcosms were set up with benzo[a]-pyrene (BaP) and/or nitrate based on C-rich, S-rich, and N-limited mangrove sediments as reductive experimental models to trigger and track the turnover of keystone taxa to address this challenge. Results Based on microbial co-occurrence network analysis, two keystone taxa, Sulfurovum and Sulfurimonas, were found to exhibit significant role transitions in different microcosms, where these two taxa played nonkeystone roles with neutral relationships in in situ mangrove sediments. However, Sulfurimonas transitioned to be keystone taxa in nitrate-replenished microcosms and formed a keystone guild with Thioalkalispira. Sulfurovum stood out in BaP-added microcosms and mutualized in a densely polycyclic aromatic hydrocarbon (PAH)-degrader-centric keystone guild with Novosphingobium and Robiginitalea, where 63.25% of added BaP was removed. Under the occurrence of nitrate and BaP, they simultaneously played roles as keystone taxa in their respective guilds but exhibited significant competition. Comparative genomics and metagenome-assembled genome (MAG) analysis was then performed to reveal the metabolic potential of those keystone taxa and to empirically deduce their functional role in keystone guilds. Sulfurimonas possesses a better sense system and motility, indicative of its aggressive role in nitrate acquisition and conversion; Sulfurovum exhibited a better ability for oxidation resistance and transporting nutrients and electrons. High-efficiency thermal asymmetric interlaced polymerase reaction (hiTAIL-PCR) and enhanced green fluorescent protein (eGFP)-labeling approaches were employed to capture and label the BaP key degrader to further experimentally verify the roles of keystone taxa Sulfurovum in the keystone guilds. Observations of the enhancement in reactive oxygen species (ROS) removal, cell growth, and degradation efficiency by co-culture of isolated keystone taxa strains experimentally demonstrated that Sulfurovum contributes to the BaP degradative microbiome against BaP toxicity. Conclusions Our findings suggest that the combined use of co-occurrence network analysis, comparative genomics, and co-culture of captured keystone taxa (3C-strategy) in microbial communities whose structure is strongly shaped by changing environmental factors can characterize keystone taxa roles in keystone guilds and may provide targets for manipulation to improve the function of the microbiome. Video Abstrac

    Five-Ring Fused Tetracyanothienoquinoids as High-Performance and Solution-Processable n‑Channel Organic Semiconductors: Effect of the Branching Position of Alkyl Chains

    No full text
    Dicyanomethylene-substituted quinoidal dithieno­[2,3-<i>d</i>;2′,3′-<i>d</i>′]­benzo­[1,2-<i>b</i>;4,5-<i>b</i>′]­dithiophene compounds (<b>QDTBDT</b>s) with alkyl chains branched at different positions were synthesized. Thin-film transistor characteristics showed that the type of charge carriers in <b>QDTBDT</b>s could be tuned by changing the branching position of the alkyl chains. <b>QDTBDT-2C</b> exhibited n-channel behavior, and the observed electron mobility was 0.57 cm<sup>2</sup> V<sup>–1</sup> s<sup>–1</sup> without post-treatment, one of the highest values reported for spin-coated thin-film transistors with no annealing under ambient conditions. <b>QDTBDT-4C</b>-based transistors displayed electron-dominated ambipolar transport behavior, with electron mobilities reaching 0.2 cm<sup>2</sup> V<sup>–1</sup> s<sup>–1</sup> and hole mobilities in the range of 10<sup>–3</sup>–10<sup>–4</sup> cm<sup>2</sup> V<sup>–1</sup> s<sup>–1</sup>. <b>QDTBDT-3C</b> showed solution-concentration-dependent carrier transport characteristics, exhibiting n-type behavior at low solution concentrations and ambipolar performance at high solution concentrations with an electron mobility of 0.22 cm<sup>2</sup> V<sup>–1</sup> s<sup>–1</sup> and a hole mobility of 0.034 cm<sup>2</sup> V<sup>–1</sup> s<sup>–1</sup>. CMOS-like inverters fabricated from <b>QDTBDT-2C</b> displayed high gain and high noise margins

    Surface water quality in the upstream-most megacity of the Yangtze River Basin (Chengdu): 2000-2019 trends, the COVID-19 lockdown effects, and water governance implications

    No full text
    Water is essential for a sustainable economic prosperity, but rapid economic growth and intensive agricultural activities usually cause water pollution. The middle and lower reaches of China\u27s Yangtze River Basin were urbanized and industrialized much earlier than the upper reach and have been suffering from water pollution. In the past two decades, economic growth accelerated in the upper reach due to several national economic initiatives. Based on analyzing water quality changes from 2000 to 2019 and during the COVID-19 lockdown in 2020 for Chengdu in the upper reach, we hope to provide some water governance suggestions. In 2019, water at 66% of 93 sites in Chengdu did not achieve the national III standards using measurements of 23 water quality parameters. The top two pollutants were total nitrogen (TN) and fecal coliform (FC). From 2000 to 2019, water quality was not significantly improved at the non-background sites of Chengdu\u27s Min Basin, and the pollution in this basin was mainly from local pollutants release. During the same period, water quality deteriorated in Chengdu\u27s Tuo Basin, where pollution was the result of pollutant discharges in Chengdu in addition to inter-city pollutant transport. During the COVID-19 lockdown, water quality generally improved in the Min Basin but not in the Tuo Basin. A further investigation on which pollution sources were shut down or not during the lockdown can help make pollution reduction targets. Based on the results, we provide suggestions to strengthen inter-jurisdictional and inter-institutional cooperation, water quality monitoring and evaluation, and ecological engineering application
    • …
    corecore