273 research outputs found

    Active and passive critical slip fields for cohesionless soils and calculation of lateral earth pressures

    Get PDF
    A new method of solving earth pressure problems is proposed in this paper within the framework of the limit equilibrium approach. The concept of the critical slip field (CSF) is postulated: the active critical slip field (ACSF) in the active case, and the passive critical slip field (PCSF) in the passive case. Based on the principle of extremum thrust force (which is theoretically consistent with the principle of optimality) in conjunction with the method of slices, a numerical procedure is presented for the determination of such fields and consequently the distribution of earth pressures on retaining walls. For simplicity at this stage, the backfill material is assumed to be a homogeneous cohesionless soil with sloping ground surface carrying uniform and vertical surcharge, while the retaining wall is allowed to be battered, and the strength of the soil may be either fully or partially mobilised. Compared with the rigorous method (i.e. the method of characteristics), the proposed method is simple in principle and easily implemented in a computer program. However, it is more accurate than other approximate techniques and agrees well with available closed-form solutions. A number of examples of ACSF and PCSF are given in this paper, and the validity and efficiency of the proposed method are demonstrated. In addition, it is easy to extend this numerical procedure to obtain more general ACSF and PCSF accomodating non-homogeneous c, ร˜ soils subject to complicated loading conditions.published_or_final_versio

    Failure model of soil around enlarged base of deep uplift piles

    Get PDF
    published_or_final_versio

    A new procedure for computing the factor of safety using the Morgenstern-Price method

    Get PDF
    By employing the same assumption regarding interslice forces as that used in the Morgenstern-Price method, two concise recurrence relations between interslice forces and interslice moments are derived which satisfy both force and moment equilibrium conditions. The Newton-Raphson method is used for determining the factor of safety and the associated scaling parameter of the interslice force function. Algebraic derivatives required in the solution process are evolved in a recursive manner which can be easily implemented in a computer program. The choices of initial values of safety factor and scaling parameter are suggested. The procedure proposed in this paper proves to be efficient and solutions converge rapidly.published_or_final_versio

    Multi-Directional Growth of Aligned Carbon Nanotubes Over Catalyst Film Prepared by Atomic Layer Deposition

    Get PDF
    The structure of vertically aligned carbon nanotubes (CNTs) severely depends on the properties of pre-prepared catalyst films. Aiming for the preparation of precisely controlled catalyst film, atomic layer deposition (ALD) was employed to deposit uniform Fe2O3 film for the growth of CNT arrays on planar substrate surfaces as well as the curved ones. Iron acetylacetonate and ozone were introduced into the reactor alternately as precursors to realize the formation of catalyst films. By varying the deposition cycles, uniform and smooth Fe2O3 catalyst films with different thicknesses were obtained on Si/SiO2 substrate, which supported the growth of highly oriented few-walled CNT arrays. Utilizing the advantage of ALD process in coating non-planar surfaces, uniform catalyst films can also be successfully deposited onto quartz fibers. Aligned few-walled CNTs can be grafted on the quartz fibers, and they self-organized into a leaf-shaped structure due to the curved surface morphology. The growth of aligned CNTs on non-planar surfaces holds promise in constructing hierarchical CNT architectures in future

    Ultra-Sensitivity Glucose Sensor Based on Field Emitters

    Get PDF
    A new glucose sensor based on field emitter of ZnO nanorod arrays (ZNA) was fabricated. This new type of ZNA field emitter-based sensor shows high sensitivity with experimental limit of detection of 1 nM glucose solution and a detection range from 1 nM to 50 ฮผM in air at room temperature, which is lower than that of glucose sensors based on surface plasmon resonance spectroscopy, fluorescence signal transmission, and electrochemical signal transduction. The new glucose sensor provides a key technique for promising consuming application in biological system for detecting low levels of glucose on single cells or bacterial cultures

    Structure-Function Analysis of Barley NLR Immune Receptor MLA10 Reveals Its Cell Compartment Specific Activity in Cell Death and Disease Resistance

    Get PDF
    Plant intracellular immune receptors comprise a large number of multi-domain proteins resembling animal NOD-like receptors (NLRs). Plant NLRs typically recognize isolate-specific pathogen-derived effectors, encoded by avirulence (AVR) genes, and trigger defense responses often associated with localized host cell death. The barley MLA gene is polymorphic in nature and encodes NLRs of the coiled-coil (CC)-NB-LRR type that each detects a cognate isolate-specific effector of the barley powdery mildew fungus. We report the systematic analyses of MLA10 activity in disease resistance and cell death signaling in barley and Nicotiana benthamiana. MLA10 CC domain-triggered cell death is regulated by highly conserved motifs in the CC and the NB-ARC domains and by the C-terminal LRR of the receptor. Enforced MLA10 subcellular localization, by tagging with a nuclear localization sequence (NLS) or a nuclear export sequence (NES), shows that MLA10 activity in cell death signaling is suppressed in the nucleus but enhanced in the cytoplasm. By contrast, nuclear localized MLA10 is sufficient to mediate disease resistance against powdery mildew fungus. MLA10 retention in the cytoplasm was achieved through attachment of a glucocorticoid receptor hormone-binding domain (GR), by which we reinforced the role of cytoplasmic MLA10 in cell death signaling. Together with our data showing an essential and sufficient nuclear MLA10 activity in disease resistance, this suggests a bifurcation of MLA10-triggered cell death and disease resistance signaling in a compartment-dependent manner

    QTL meta-analysis of root traits in Brassica napus under contrasting phosphorus supply in two growth systems

    Get PDF
    A high-density SNP-based genetic linkage map was constructed and integrated with a previous map in the Tapidor x Ningyou7 (TNDH) Brassica napus population, giving a new map with a total of 2041 molecular markers and an average marker density which increased from 0.39 to 0.97 (0.82 SNP bin) per cM. Root and shoot traits were screened under low and โ€˜normalโ€™ phosphate (Pi) supply using a โ€˜pouch and wickโ€™ system, and had been screened previously in an agar based system. The P-efficient parent Ningyou7 had a shorter primary root length (PRL), greater lateral root density (LRD) and a greater shoot biomass than the P-inefficient parent Tapidor under both treatments and growth systems. Quantitative trait loci (QTL) analysis identified a total of 131 QTL, and QTL meta-analysis found four integrated QTL across the growth systems. Integration reduced the confidence interval by ~41%. QTL for root and shoot biomass were co-located on chromosome A3 and for lateral root emergence were co-located on chromosomes A4/C4 and C8/C9. There was a major QTL for LRD on chromosome C9 explaining ~18% of the phenotypic variation. QTL underlying an increased LRD may be a useful breeding target for P uptake efficiency in Brassica

    Methylation profiling of Epstein-Barr virus immediate-early gene promoters, BZLF1 and BRLF1 in tumors of epithelial, NK- and B-cell origins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Epstein-Barr virus (EBV) establishes its latency in EBV-associated malignancies, accompanied by occasionally reactivated lytic cycle. Promoter CpG methylation of EBV genome plays an essential role in maintaining viral latency. Two immediate-early (IE) genes, BZLF1 and BRLF1, induce the switch from latent to lytic infection. Studies of methylation-dependent binding of BZLF1 and BRLF1 to EBV promoters have been well reported, but little is known about the methylation status of <it>BZLF1 </it>and <it>BRLF1 </it>promoters (Zp and Rp) in tumor samples.</p> <p>Methods</p> <p>We evaluated the methylation profiles of Zp and Rp by methylation-specific PCR (MSP) and bisulfite genomic sequencing (BGS), as well as <it>BZLF1 </it>and <it>BRLF1 </it>expression by semiquantitative reverse transcription (RT)-PCR in tumors of epithelial, NK- and B-cell origins.</p> <p>Results</p> <p>We found that both Zp and Rp were hypermethylated in all studied EBV-positive cell lines and tumors of lymphoid (B- or NK cell) or epithelial origin, while unmethylated Zp and Rp alleles were detected in cell lines expressing <it>BZLF1 </it>and <it>BRLF1</it>. Following azacytidine treatment or combined with trichostatin A (TSA), the expression of <it>BZLF1 </it>and <it>BRLF1 </it>was restored along with concomitant promoter demethylation, which subsequently induced the reactivation of early lytic gene <it>BHRF1 </it>and late lytic gene <it>BLLF1</it>.</p> <p>Conclusions</p> <p>Hypermethylation of Zp and Rp mediates the frequent silencing of <it>BZLF1 </it>and <it>BRLF1 </it>in EBV-associated tumors, which could be reactivated by demethylation agent and ultimately initiated the EBV lytic cascade.</p

    Carvacrol, a Food-Additive, Provides Neuroprotection on Focal Cerebral Ischemia/Reperfusion Injury in Mice

    Get PDF
    Carvacrol (CAR), a naturally occurring monoterpenic phenol and food additive, has been shown to have antimicrobials, antitumor, and antidepressant-like activities. A previous study demonstrated that CAR has the ability to protect liver against ischemia/reperfusion injury in rats. In this study, we investigated the protective effects of CAR on cerebral ischemia/reperfusion injury in a middle cerebral artery occlusion mouse model. We found that CAR (50 mg/kg) significantly reduced infarct volume and improved neurological deficits after 75 min of ischemia and 24 h of reperfusion. This neuroprotection was in a dose-dependent manner. Post-treatment with CAR still provided protection on infarct volume when it was administered intraperitoneally at 2 h after reperfusion; however, intracerebroventricular post-treatment reduced infarct volume even when the mice were treated with CAR at 6 h after reperfusion. These findings indicated that CAR has an extended therapeutic window, but delivery strategies may affect the protective effects of CAR. Further, we found that CAR significantly decreased the level of cleaved caspase-3, a marker of apoptosis, suggesting the anti-apoptotic activity of CAR. Finally, our data indicated that CAR treatment increased the level of phosphorylated Akt and the neuroprotection of CAR was reversed by a PI3K inhibitor LY-294002, demonstrating the involvement of the PI3K/Akt pathway in the anti-apoptotic mechanisms of CAR. Due to its safety and wide use in the food industry, CAR is a promising agent to be translated into clinical trials

    Identification of Potent EGFR Inhibitors from TCM Database@Taiwan

    Get PDF
    Overexpression of epidermal growth factor receptor (EGFR) has been associated with cancer. Targeted inhibition of the EGFR pathway has been shown to limit proliferation of cancerous cells. Hence, we employed Traditional Chinese Medicine Database (TCM Database@Taiwan) (http://tcm.cmu.edu.tw) to identify potential EGFR inhibitor. Multiple Linear Regression (MLR), Support Vector Machine (SVM), Comparative Molecular Field Analysis (CoMFA), and Comparative Molecular Similarities Indices Analysis (CoMSIA) models were generated using a training set of EGFR ligands of known inhibitory activities. The top four TCM candidates based on DockScore were 2-O-caffeoyl tartaric acid, Emitine, Rosmaricine, and 2-O-feruloyl tartaric acid, and all had higher binding affinities than the control Iressaยฎ. The TCM candidates had interactions with Asp855, Lys716, and Lys728, all which are residues of the protein kinase binding site. Validated MLR (rยฒ = 0.7858) and SVM (rยฒ = 0.8754) models predicted good bioactivity for the TCM candidates. In addition, the TCM candidates contoured well to the 3D-Quantitative Structure-Activity Relationship (3D-QSAR) map derived from the CoMFA (qยฒ = 0.721, rยฒ = 0.986) and CoMSIA (qยฒ = 0.662, rยฒ = 0.988) models. The steric field, hydrophobic field, and H-bond of the 3D-QSAR map were well matched by each TCM candidate. Molecular docking indicated that all TCM candidates formed H-bonds within the EGFR protein kinase domain. Based on the different structures, H-bonds were formed at either Asp855 or Lys716/Lys728. The compounds remained stable throughout molecular dynamics (MD) simulation. Based on the results of this study, 2-O-caffeoyl tartaric acid, Emitine, Rosmaricine, and 2-O-feruloyl tartaric acid are suggested to be potential EGFR inhibitors.National Science Council of Taiwan (NSC 99-2221-E-039-013-)Committee on Chinese Medicine and Pharmacy (CCMP100-RD-030)China Medical University (CMU98-TCM)China Medical University (CMU99-TCM)China Medical University (CMU99-S-02)China Medical University (CMU99-ASIA-25)China Medical University (CMU99-ASIA-26)China Medical University (CMU99-ASIA-27)China Medical University (CMU99-ASIA-28)Asia UniversityTaiwan Department of Health. Clinical Trial and Research Center of Excellence (DOH100-TD-B-111-004)Taiwan Department of Health. Cancer Research Center of Excellence (DOH100-TD-C-111-005
    • โ€ฆ
    corecore