39,115 research outputs found

    Relative Entropy: Free Energy Associated with Equilibrium Fluctuations and Nonequilibrium Deviations

    Full text link
    Using a one-dimensional macromolecule in aqueous solution as an illustration, we demonstrate that the relative entropy from information theory, kpkln(pk/pk)\sum_k p_k\ln(p_k/p_k^*), has a natural role in the energetics of equilibrium and nonequilibrium conformational fluctuations of the single molecule. It is identified as the free energy difference associated with a fluctuating density in equilibrium, and is associated with the distribution deviate from the equilibrium in nonequilibrium relaxation. This result can be generalized to any other isothermal macromolecular systems using the mathematical theories of large deviations and Markov processes, and at the same time provides the well-known mathematical results with an interesting physical interpretations.Comment: 5 page

    Irreversible Thermodynamics in Multiscale Stochastic Dynamical Systems

    Full text link
    This work extends the results of the recently developed theory of a rather complete thermodynamic formalism for discrete-state, continuous-time Markov processes with and without detailed balance. We aim at investigating the question that whether and how the thermodynamic structure is invariant in a multiscale stochastic system. That is, whether the relations between thermodynamic functions of state and process variables remain unchanged when the system is viewed at different time scales and resolutions. Our results show that the dynamics on a fast time scale contribute an entropic term to the "internal energy function", uS(x)u_S(x), for the slow dynamics. Based on the conditional free energy uS(x)u_S(x), one can then treat the slow dynamics as if the fast dynamics is nonexistent. Furthermore, we show that the free energy, which characterizes the spontaneous organization in a system without detailed balance, is invariant with or without the fast dynamics: The fast dynamics is assumed to reach stationarity instantaneously on the slow time scale; they have no effect on the system's free energy. The same can not be said for the entropy and the internal energy, both of which contain the same contribution from the fast dynamics. We also investigate the consequences of time-scale separation in connection to the concepts of quasi-stationaryty and steady-adiabaticity introduced in the phenomenological steady-state thermodynamics

    The Spin Mass of an Electron Liquid

    Get PDF
    We show that in order to calculate correctly the {\it spin current} carried by a quasiparticle in an electron liquid one must use an effective "spin mass" msm_s, that is larger than both the band mass, mbm_b, which determines the charge current, and the quasiparticle effective mass mm^*, which determines the heat capacity. We present microscopic calculations of msm_s in a paramagnetic electron liquid in three and two dimensions, showing that the mass enhancement ms/mbm_s/m_b can be a very significant effect.Comment: 10 pages, 1 figur

    Circadian and Ultradian Rhythms of Free Glucocorticoid Hormone Are Highly Synchronized between the Blood, the Subcutaneous Tissue, and the Brain

    Get PDF
    Total glucocorticoid hormone levels in plasma of various species, including humans, follow a circadian rhythm that is made up from an underlying series of hormone pulses. In blood most of the glucocorticoid is bound to corticosteroid-binding globulin and albumin, resulting in low levels of free hormone. Although only the free fraction is biologically active, surprisingly little is known about the rhythms of free glucocorticoid hormones. We used single-probe microdialysis to measure directly the free corticosterone levels in the blood of freely behaving rats. Free corticosterone in the blood shows a distinct circadian and ultradian rhythm with a pulse frequency of approximately one pulse per hour together with an increase in hormone levels and pulse height toward the active phase of the light/dark cycle. Similar rhythms were also evident in the subcutaneous tissue, demonstrating that free corticosterone rhythms are transferred from the blood into peripheral target tissues. Furthermore, in a dual-probe microdialysis study, we demonstrated that the circadian and ultradian rhythms of free corticosterone in the blood and the subcutaneous tissue were highly synchronized. Moreover, free corticosterone rhythms were also synchronous between the blood and the hippocampus. These data demonstrate for the first time an ultradian rhythm of free corticosterone in the blood that translates into synchronized rhythms of free glucocorticoid hormone in peripheral and central tissues. The maintenance of ultradian rhythms across tissue barriers in both the periphery and the brain has important implications for research into aberrant biological rhythms in disease and for the development of improved protocols for glucocorticoid therapy

    High visibility two photon interference of frequency time entangled photons generated in a quasi phase matched AlGaAs waveguide

    Full text link
    We demonstrate experimentally the frequency time entanglement of photon pairs produced in a CW pumped quasi phased matched AlGaAs superlattice waveguide. A visibility of 96.0+-0.7% without background subtraction has been achieved, which corresponds the violation of Bell inequality by 52 standard deviations

    Competition and adaptation in an Internet evolution model

    Get PDF
    We model the evolution of the Internet at the Autonomous System level as a process of competition for users and adaptation of bandwidth capability. We find the exponent of the degree distribution as a simple function of the growth rates of the number of autonomous systems and the total number of connections in the Internet, both empirically measurable quantities. This fact place our model apart from others in which this exponent depends on parameters that need to be adjusted in a model dependent way. Our approach also accounts for a high level of clustering as well as degree-degree correlations, both with the same hierarchical structure present in the real Internet. Further, it also highlights the interplay between bandwidth, connectivity and traffic of the network.Comment: Minor content changes and inset of fig.

    Impalement transitions in droplets impacting microstructured superhydrophobic surfaces

    Full text link
    Liquid droplets impacting a superhydrophobic surface decorated with micro-scale posts often bounce off the surface. However, by decreasing the impact velocity droplets may land on the surface in a fakir state, and by increasing it posts may impale droplets that are then stuck on the surface. We use a two-phase lattice-Boltzmann model to simulate droplet impact on superhydrophobic surfaces, and show that it may result in a fakir state also for reasonable high impact velocities. This happens more easily if the surface is made more hydrophobic or the post height is increased, thereby making the impaled state energetically less favourable.Comment: 8 pages, 4 figures, to appear in Europhysics Letter
    corecore