24 research outputs found

    Removal of TcO4- from Representative Nuclear Waste Streams with Layered Potassium Metal Sulfide Materials

    Get PDF
    Many efforts have focused on the sequestration and immobilization of 99Tc because the radionuclide is highly mobile in oxidizing environments and presents serious health risks due to its radiotoxicity and long half-life (t1/2 = 213 000 a). One of the more common methods for Tc removal from solution and immobilization in solids is based on reducing Tc from highly soluble Tc(VII) to sparingly soluble Tc(IV). Here, we report results obtained with two potassium metal sulfides (KMS-2 and KMS-2-SS) that are capable of reducing Tc(VII) to Tc(IV). Batch sorption experiments were performed in both oxic and anoxic conditions for 15 d in both deionized water (DIW) and a highly caustic (pH ∼ 13.6), high ionic strength (8.0 mol L-1), low-activity waste (LAW) stream simulant solution. Tc removal for both materials in DIW is improved in anoxic conditions compared to oxic conditions as a result of a higher solution pH. In DIW and anoxic conditions, KMS-2 is capable of removing ∼45% of Tc, and KMS-2-SS is capable of removing ∼90% of Tc. Both materials perform even better in the LAW simulant and remove more than 90% of available Tc after 15 d of contact in anoxic conditions. Postreaction solids analyses indicate that Tc(VII) is reduced to Tc(IV) and that Tc(IV) is bonded to S atoms in a Tc2S7 complex. Examination of the materials after Tc removal by X-ray diffraction shows that the initially crystalline KMS-2 materials lose much of their initial long-range order. We suggest a Tc removal mechanism wherein the TcO4- enters the interlayer of the KMS-2 materials where it is reduced by sulfide, which results in a distorted crystalline structure and a solid-state Tc2S7 complex

    420,000 year assessment of fault leakage rates shows geological carbon storage is secure

    Get PDF
    Carbon capture and storage (CCS) technology is routinely cited as a cost effective tool for climate change mitigation. CCS can directly reduce industrial CO2 emissions and is essential for the retention of CO2 extracted from the atmosphere. To be effective as a climate change mitigation tool, CO2 must be securely retained for 10,000 years (10 ka) with a leakage rate of below 0.01% per year of the total amount of CO2 injected. Migration of CO2 back to the atmosphere via leakage through geological faults is a potential high impact risk to CO2 storage integrity. Here, we calculate for the first time natural leakage rates from a 420 ka paleo-record of CO2 leakage above a naturally occurring, faulted, CO2 reservoir in Arizona, USA. Surface travertine (CaCO3) deposits provide evidence of vertical CO2 leakage linked to known faults. U-Th dating of travertine deposits shows leakage varies along a single fault and that individual seeps have lifespans of up to 200 ka. Whilst the total volumes of CO2 required to form the travertine deposits are high, time-averaged leakage equates to a linear rate of less than 0.01%/yr. Hence, even this natural geological storage site, which would be deemed to be of too high risk to be selected for engineered geologic storage, is adequate to store CO2 for climate mitigation purposes

    Review of the impacts of leaking CO2 gas and brine on groundwater quality

    No full text
    This paper provides an overview of the existing data and knowledge presented in recent literature about the potential leaking of CO2 from the deep subsurface storage reservoirs and the effects on groundwater quality. The objectives are to: 1) present data and discuss potential risks associated with the groundwater quality degradation due to CO2 gas and brine exposure; 2) identify the set of geochemical data required to develop models to assess and predict aquifer responses to CO2 and brine leakage; and 3) present a summary of the findings and reveal future trends in this important and expanding research area. The discussion is focused around aquifer responses to CO2 gas and brine exposure and the degree of impact; major hydrogeological and geochemical processes and site-specific properties known to control aquifer quality under CO2 exposure conditions; contributions from the deep reservoirs (plume characteristics and composition); and the possibility of establishment of a new network of reactions and processes affecting or controlling the overall mobility of major, minor, and trace elements and the fate of the elements released from sediments or transported with brine. This paper also includes a discussion on the development of conceptual and reduced order models (ROMs) to describe and predict aquifer responses and whether or not the release of metals following exposure to CO2 is harmful, which are an essential tool for CO2 sequestration related risk assessment. Future research needs in this area are also included at the end of the paper

    Evaluating impacts of CO2 intrusion into an unconsolidated aquifer: II. Modeling results

    No full text
    Large scale deployment of CO2 geological sequestration requires the assessment of the risks. One of the potential risks is the impact of CO2 leakage on shallow groundwater overlying the sequestration site.The understanding of the key chemical processes and parameters are critical for building numerical models for risk assessment. Model interpretation of laboratory and field tests is an effective way to enhance such understanding. As part of this investigation, column experiments in which the CO2 saturated synthetic groundwater flowed through a column packed with materials from the High Plains aquifer, were conducted. Changes in concentrations of several constituents in the column effluent and pH were determined. In this paper, a reactive transport model was developed to describe and interpret the observed concentration changes, attempting to shed light on the chemical reactions and mechanisms and key parameters that control the changes in effluent chemistry. The reactive transport model described fairly well the changes in pH and the concentration changes of Ca, Mg, Ba, Sr, Cs, As and Pb. Calcite dissolution and Ca-driven cation exchange reactions were the major drivers for the concentration changes of Ca, Ba, Sr, and Cs. The pH-driven adsorption/desorption reactions led to a concentration increase of As and Pb. The volume fraction and reactive surface area of calcite, CEC and sorption capacity were key parameters in controlling the magnitude of concentration increase. Model results also showed that Ba, which is an important chemical element released into the aqueous phase during these experiments, may be incorporated into the calcite crystal structure and the dissolution of Ba-bearing calcite could be an alternative pathway to explain the increase in aqueous Ba concentration when sediments are exposed to the CO2 saturated leaching groundwater

    Technetium Stabilization in Low-Solubility Sulfide Phases: A Review

    No full text
    Technetium contamination remains a major environmental problem at nuclear reprocessing sites, e.g., the Hanford Site, Washington, USA. At these sites, Tc is present in liquid waste destined for immobilization in a waste form or has been released into the subsurface environment. The high environmental risk associated with Tc is due to its long half-life (214 000 years) and the mobility of the oxidized anionic species Tc(VII)O4-. Under reducing conditions, TcO4- is readily reduced to Tc(IV), which commonly exists as a relatively insoluble and therefore immobile, hydrous Tc-oxide (TcO2·nH2O). The stability of Tc(IV) sequestered as solid phases depends on the solubility of the solid and susceptibility to reoxidation to TcO4-, which in turn depend on the (biogeo)chemical conditions of the environment and/or nuclear waste streams. Unfortunately, the solubility of crystalline TcO2 or amorphous TcO2·H2O is still above the maximum contaminant level (MCL) established by the U.S. EPA (900 pCi/L), and the kinetics of TcO2 oxidative dissolution can be on the order of days to years. In addition to oxygen, sulfur can form complexes that significantly affect the adsorption, solubility, and reoxidation potential of Tc, especially Tc(IV). The principal technetium sulfides are TcS2 and Tc2S7, but much less is known about the mechanisms of formation, stabilization, and reoxidation of Tc-sulfides. A common assumption is that sulfides are less soluble than their oxyhydrous counterparts. Determination of the molecular structure of Tc2S7 in particular has been hampered by the propensity of this phase to precipitate as an amorphous substance. Recent work indicates that the oxidation state of Tc in Tc2S7 is Tc(IV), in apparent contradiction to its nominal stoichiometry. Technetium is relatively immobile in reduced sediments and soils, but in many cases the exact sink for Tc has not been identified. Experiments and modeling have demonstrated that both abiotic and biologic mechanisms can exert strong controls on Tc mobility and that Tc binding or uptake into sulfide phases can occur. These and similar investigations also show that extended exposure to oxidizing conditions results in transformation of sulfide-stabilized Tc(IV) to a Tc(IV)O2-like phase without formation of measurable dissolved TcO4-, suggesting a solid-state transformation in which Tc(IV)-associated sulfide is preferentially oxidized before the Tc(IV) cation. This transformation of Tc(IV)-sulfides to Tc(IV)-oxides may be the main process that limits remobilization of Tc as Tc(VII)O4-. The efficacy of the final waste form to retain Tc also strongly depends on the ability of oxidizing species to enter the waste and convert Tc(IV) to Tc(VII). Many waste form designs are reducing (e.g., cementitious waste forms such as salt stone) and, therefore, attempt to restrict access of oxidizing species such that diffusion is the rate-limiting step in remobilization of Tc

    Editorial

    No full text
    corecore