149 research outputs found

    Failure model of soil around enlarged base of deep uplift piles

    Get PDF
    published_or_final_versio

    Suitable reference genes for real-time PCR in human HBV-related hepatocellular carcinoma with different clinical prognoses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Housekeeping genes are routinely used as endogenous references to account for experimental differences in gene expression assays. However, recent reports show that they could be de-regulated in different diseases, model animals, or even under varied experimental conditions, which may lead to unreliable results and consequently misinterpretations. This study focused on the selection of suitable reference genes for quantitative PCR in human hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) with different clinical outcomes.</p> <p>Methods</p> <p>We evaluated 6 commonly used housekeeping genes' expression levels in 108 HBV-related HCCs' matched tumor and non-tomor tissue samples with different clinical outcomes and 26 normal liver specimens by real-time PCR. The expression stability of the 6 genes was compared using the software programs geNorm and NormFinder. To show the impact of reference genes on data analysis, we took PGK1 as a target gene normalized by each reference gene, and performed one-way ANOVA and the equivalence test.</p> <p>Results</p> <p>With the geNorm and NormFinder software programs, analysis of TBP and HPRT1 showed the best stability in all tissue samples, while 18s and ACTB were less stable. When 18s or ACTB was used for normalization, no significant difference of PGK1 expression (p > 0.05) was found among HCC tissues with and without metastasis, and normal liver specimens; however, dramatically differences (p < 0.001) were observed when either TBP or the combination of TBP and HPRT1 were selected as reference genes.</p> <p>Conclusion</p> <p>TBP and HPRT1 are the most reliable reference genes for q-PCR normalization in HBV-related HCC specimens. However, the well-used ACTB and 18S are not suitable, which actually lead to the misinterpretation of the results in gene expression analysis.</p

    Suitable reference genes for real-time PCR in human HBV-related hepatocellular carcinoma with different clinical prognoses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Housekeeping genes are routinely used as endogenous references to account for experimental differences in gene expression assays. However, recent reports show that they could be de-regulated in different diseases, model animals, or even under varied experimental conditions, which may lead to unreliable results and consequently misinterpretations. This study focused on the selection of suitable reference genes for quantitative PCR in human hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) with different clinical outcomes.</p> <p>Methods</p> <p>We evaluated 6 commonly used housekeeping genes' expression levels in 108 HBV-related HCCs' matched tumor and non-tomor tissue samples with different clinical outcomes and 26 normal liver specimens by real-time PCR. The expression stability of the 6 genes was compared using the software programs geNorm and NormFinder. To show the impact of reference genes on data analysis, we took PGK1 as a target gene normalized by each reference gene, and performed one-way ANOVA and the equivalence test.</p> <p>Results</p> <p>With the geNorm and NormFinder software programs, analysis of TBP and HPRT1 showed the best stability in all tissue samples, while 18s and ACTB were less stable. When 18s or ACTB was used for normalization, no significant difference of PGK1 expression (p > 0.05) was found among HCC tissues with and without metastasis, and normal liver specimens; however, dramatically differences (p < 0.001) were observed when either TBP or the combination of TBP and HPRT1 were selected as reference genes.</p> <p>Conclusion</p> <p>TBP and HPRT1 are the most reliable reference genes for q-PCR normalization in HBV-related HCC specimens. However, the well-used ACTB and 18S are not suitable, which actually lead to the misinterpretation of the results in gene expression analysis.</p

    Electron beam-formed ferromagnetic defects on MoS2 surface along 1T phase transition

    Get PDF
    1 T phase incorporation into 2H-MoS2 via an optimal electron irradiation leads to induce a weak ferromagnetic state at room temperature, together with the improved transport property. In addition to the 1T-like defects, the electron irradiation on the cleaved MoS2 surface forms the concentric circletype defects that are caused by the 2 H/1 T phase transition and the vacancies of the nearby S atoms of the Mo atoms. The electron irradiation-reduced bandgap is promising in vanishing the Schottky barrier to attaining spintronics device. The simple method to control and improve the magnetic and electrical properties on the MoS2 surface provides suitable ways for the low-dimensional device applications.ope

    Complications and pitfalls of lumbar interlaminar and transforaminal epidural injections

    Get PDF
    Lumbar interlaminar and transforaminal epidural injections are used in the treatment of lumbar radicular pain and other lumbar spinal pain syndromes. Complications from these procedures arise from needle placement and the administration of medication. Potential risks include infection, hematoma, intravascular injection of medication, direct nerve trauma, subdural injection of medication, air embolism, disc entry, urinary retention, radiation exposure, and hypersensitivity reactions. The objective of this article is to review the complications of lumbar interlaminar and transforaminal epidural injections and discuss the potential pitfalls related to these procedures. We performed a comprehensive literature review through a Medline search for relevant case reports, clinical trials, and review articles. Complications from lumbar epidural injections are extremely rare. Most if not all complications can be avoided by careful technique with accurate needle placement, sterile precautions, and a thorough understanding of the relevant anatomy and contrast patterns on fluoroscopic imaging

    Design Novel Dual Agonists for Treating Type-2 Diabetes by Targeting Peroxisome Proliferator-Activated Receptors with Core Hopping Approach

    Get PDF
    Owing to their unique functions in regulating glucose, lipid and cholesterol metabolism, PPARs (peroxisome proliferator-activated receptors) have drawn special attention for developing drugs to treat type-2 diabetes. By combining the lipid benefit of PPAR-alpha agonists (such as fibrates) with the glycemic advantages of the PPAR-gamma agonists (such as thiazolidinediones), the dual PPAR agonists approach can both improve the metabolic effects and minimize the side effects caused by either agent alone, and hence has become a promising strategy for designing effective drugs against type-2 diabetes. In this study, by means of the powerful “core hopping” and “glide docking” techniques, a novel class of PPAR dual agonists was discovered based on the compound GW409544, a well-known dual agonist for both PPAR-alpha and PPAR-gamma modified from the farglitazar structure. It was observed by molecular dynamics simulations that these novel agonists not only possessed the same function as GW409544 did in activating PPAR-alpha and PPAR-gamma, but also had more favorable conformation for binding to the two receptors. It was further validated by the outcomes of their ADME (absorption, distribution, metabolism, and excretion) predictions that the new agonists hold high potential to become drug candidates. Or at the very least, the findings reported here may stimulate new strategy or provide useful insights for discovering more effective dual agonists for treating type-2 diabetes. Since the “core hopping” technique allows for rapidly screening novel cores to help overcome unwanted properties by generating new lead compounds with improved core properties, it has not escaped our notice that the current strategy along with the corresponding computational procedures can also be utilized to find novel and more effective drugs for treating other illnesses

    Azimuthal Charged-Particle Correlations and Possible Local Strong Parity Violation

    Get PDF
    Parity-odd domains, corresponding to nontrivial topological solutions of the QCD vacuum, might be created during relativistic heavy-ion collisions. These domains are predicted to lead to charge separation of quarks along the system’s orbital momentum axis. We investigate a three-particle azimuthal correlator which is a P even observable, but directly sensitive to the charge separation effect. We report measurements of charged hadrons near center-of-mass rapidity with this observable in Au+Au and Cu+Cu collisions at √sNN=200  GeV using the STAR detector. A signal consistent with several expectations from the theory is detected. We discuss possible contributions from other effects that are not related to parity violation

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe
    corecore