51 research outputs found

    Single-lined Spectroscopic Binary Star Candidates in the RAVE Survey

    Get PDF
    Repeated spectroscopic observations of stars in the RAdial Velocity Experiment (RAVE) database are used to identify and examine single-lined binary (SB1) candidates. The RAVE latest internal database (VDR3) includes radial velocities, atmospheric parameters, and other parameters for approximately a quarter of a million different stars with slightly less than 300,000 observations. In the sample of ~20,000 stars observed more than once, 1333 stars with variable radial velocities were identified. Most of them are believed to be SB1 candidates. The fraction of SB1 candidates among stars with several observations is between 10% and 15% which is the lower limit for binarity among RAVE stars. Due to the distribution of time spans between the re-observation that is biased toward relatively short timescales (days to weeks), the periods of the identified SB1 candidates are most likely in the same range. Because of the RAVE's narrow magnitude range most of the dwarf candidates belong to the thin Galactic disk while the giants are part of the thick disk with distances extending to up to a few kpc. The comparison of the list of SB1 candidates to the VSX catalog of variable stars yielded several pulsating variables among the giant population with radial velocity variations of up to few tens of km s–1. There are 26 matches between the catalog of spectroscopic binary orbits (SB9S_{B^9}) and the whole RAVE sample for which the given periastron time and the time of RAVE observation were close enough to yield a reliable comparison. RAVE measurements of radial velocities of known spectroscopic binaries are consistent with their published radial velocity curves

    Why Do Dolphins Carry Sponges?

    Get PDF
    Tool use is rare in wild animals, but of widespread interest because of its relationship to animal cognition, social learning and culture. Despite such attention, quantifying the costs and benefits of tool use has been difficult, largely because if tool use occurs, all population members typically exhibit the behavior. In Shark Bay, Australia, only a subset of the bottlenose dolphin population uses marine sponges as tools, providing an opportunity to assess both proximate and ultimate costs and benefits and document patterns of transmission. We compared sponge-carrying (sponger) females to non-sponge-carrying (non-sponger) females and show that spongers were more solitary, spent more time in deep water channel habitats, dived for longer durations, and devoted more time to foraging than non-spongers; and, even with these potential proximate costs, calving success of sponger females was not significantly different from non-spongers. We also show a clear female-bias in the ontogeny of sponging. With a solitary lifestyle, specialization, and high foraging demands, spongers used tools more than any non-human animal. We suggest that the ecological, social, and developmental mechanisms involved likely (1) help explain the high intrapopulation variation in female behaviour, (2) indicate tradeoffs (e.g., time allocation) between ecological and social factors and, (3) constrain the spread of this innovation to primarily vertical transmission

    CHROMOSPHERICALLY ACTIVE STARS in the RAVE SURVEY. II. YOUNG DWARFS in the SOLAR NEIGHBORHOOD

    Get PDF
    © 2017. The American Astronomical Society. All rights reserved. A large sample of over 38,000 chromospherically active candidate solar-like stars and cooler dwarfs from the RAVE survey is addressed in this paper. An improved activity identification with respect to the previous study was introduced to build a catalog of field stars in the solar neighborhood with an excess emission flux in the calcium infrared triplet wavelength region. The central result of this work is the calibration of the age-activity relation for main-sequence dwarfs in a range from a few 10 Myr up to a few Gyr. It enabled an order of magnitude age estimation of the entire active sample. Almost 15,000 stars are shown to be younger than 1 Gyr and ∌2000 younger than 100 Myr. The young age of the most active stars is confirmed by their position off the main sequence in the J - K versus N UV - V diagram showing strong ultraviolet excess, mid-infrared excess in the J - K versus W 1 - W 2 diagram, and very cool temperatures (J - K < 0.7). They overlap with the reference pre-main-sequence RAVE stars often displaying X-ray emission. The activity level increasing with the color reveals their different nature from the solar-like stars and probably represents an underlying dynamo-generating magnetic fields in cool stars. Of the RAVE objects from DR5, 50% are found in the TGAS catalog and supplemented with accurate parallaxes and proper motions by Gaia. This makes the database of a large number of young stars in a combination with RAVE's radial velocities directly useful as a tracer of the very recent large-scale star formation history in the solar neighborhood. The data are available online in the Vizier database

    Chemical gradients in the Milky Way from the RAVE data II. Giant stars

    Get PDF
    Aims: We provide new constraints on the chemo-dynamical models of the Milky Way by measuring the radial and vertical chemical gradients for the elements Mg, Al, Si, Ti, and Fe in the Galactic disc and the gradient variations as a function of the distance from the Galactic plane (Z). Methods: We selected a sample of giant stars from the RAVE database using the gravity criterium 1.7 < log g < 2.8. We created a RAVE mock sample with the Galaxia code based on the Besançon model and selected a corresponding mock sample to compare the model with the observed data. We measured the radial gradients and the vertical gradients as a function of the distance from the Galactic plane Z to study their variation across the Galactic disc. Results: The RAVE sample exhibits a negative radial gradient of d[Fe/H]/dR = −0.054 dex kpc−1 close to the Galactic plane (|Z| < 0.4 kpc) that becomes flatter for larger |Z|. Other elements follow the same trend although with some variations from element to element. The mock sample has radial gradients in fair agreement with the observed data. The variation of the gradients with Z shows that the Fe radial gradient of the RAVE sample has little change in the range |Z| 0.6 kpc and then flattens. The iron vertical gradient of the RAVE sample is slightly negative close to the Galactic plane and steepens with |Z|. The mock sample exhibits an iron vertical gradient that is always steeper than the RAVE sample. The mock sample also shows an excess of metal-poor stars in the [Fe/H] distributions with respect to the observed data. These discrepancies can be reduced by decreasing the number of thick disc stars and increasing their average metallicity in the Besançon model

    Galactic kinematics from RAVE to Gaia-RVS Data

    Get PDF
    RAVE data has provided new results on Galactic kinematics like the kinematical decomposition of the Galactic disk. This decomposition permits to identify the different components of the disk and to characterize them in terms of scale height and scale length. With the data provided by Gaia and in particular the RVS, we will have a completly renewed view of the Galaxy. The precision of the RVS will permit to undertake a precise analysis of the kinematics of the Galactic disks. This knowledge will provide significant clues to constrain the scenarios of the Galactic disk formation

    A new species of cryptic cyanobacteria isolated from the epidermis of a bottlenose dolphin and as a bioaerosol

    Full text link
    Two cyanobacterial strains, one collected from an epidermal mat present on a dead bottlenose dolphin and the other as a bioaerosol 457 m (1500 ft) above the river, were recently analysed from the St. Johns River, Jacksonville, Florida, USA. Both samples had major phenotypic plasticity which confused morphological identification. Amplicon sequencing of the 16S rRNA gene from the isolates revealed that both samples were closely aligned (branch bootstrap support = 100%) with the recently erected genus Komarekiella. Whole genome sequencing and phylogenetic construction also supported the isolation of a new species of cyanobacteria branching from the Nostoc clade. A total evidence approach of molecular, genetic, and ecological examination of these strains supported the erection of a new species, Komarekiella delphini-convector. A prior study determined that the dolphin with the epidermal mat had low levels of microcystins/nodularins (MCs/NODs) in the hepatic tissue. To investigate whether these toxins originated from the epidermal mat, immunoassay (ELISA) and 2-methyl-3-methoxy-4-phenylbutyric acid (MMPB) techniques were conducted on the original mat and subsequent culture samples. The results from both analyses were not conclusive. Genome mining was conducted and revealed diverse biosynthetic capabilities of this species but could not support toxin-producing potential. Further analytical work is required to determine the pathogenic capacity of this epizoic species

    Chromospherically Active Stars in the RAVE Survey. II. Young dwarfs in the Solar neighborhood

    Get PDF
    A large sample of over 38,000 chromospherically active candidate solar-like stars and cooler dwarfs from the RAVE survey is addressed in this paper. An improved activity identification with respect to the previous study was introduced to build a catalog of field stars in the Solar neighborhood with an excess emission flux in the calcium infrared triplet wavelength region. The central result of this work is the calibration of the age--activity relation for the main sequence dwarfs in a range from a few 10  Myr10 \; \mathrm{Myr} up to a few Gyr. It enabled an order of magnitude age estimation of the entire active sample. Almost 15,000 stars are shown to be younger than 1  Gyr1\;\mathrm{Gyr} and ∌\sim2000 younger than 100  Myr100\;\mathrm{Myr}. The young age of the most active stars is confirmed by their position off the main sequence in the J−KJ-K versus NUV−VN_{UV}-V diagram showing strong ultraviolet excess, mid-infrared excess in the J−KJ-K versus W1−W2W_1-W_2 diagram and very cool temperatures (J−K>0.7J-K>0.7). They overlap with the reference pre-main sequence RAVE stars often displaying X-ray emission. The activity level increasing with the color reveals their different nature from the solar-like stars and probably represents an underlying dynamo generating magnetic fields in cool stars. 50\% of the RAVE objects from DR5 are found in the TGAS catalog and supplemented with accurate parallaxes and proper motions by Gaia. This makes the database of a large number of young stars in a combination with RAVE's radial velocities directly useful as a tracer of the very recent large-scale star formation history in the Solar neighborhood. The data are available online in the Vizier database

    A search for new members of the ÎČ Pictoris, Tucana–Horologium and Δ Cha moving groups in the RAVE data base

    Get PDF
    We report on the discovery of new members of nearby young moving groups, exploiting the full power of combining the Radial Velocity Experiment (RAVE) survey with several stellar age diagnostic methods and follow-up high-resolution optical spectroscopy. The results include the identification of one new and five likely members of the ÎČ Pictoris moving group, ranging from spectral types F9 to M4 with the majority being M dwarfs, one K7 likely member of the Δ Cha group and two stars in the Tucana–Horologium association. Based on the positive identifications, we foreshadow a great potential of the RAVE data base in progressing towards a full census of young moving groups in the solar neighbourhood

    Is the Milky Way still breathing? RAVE–Gaia streaming motions

    Get PDF
    We use data from the Radial Velocity Experiment (RAVE) and the Tycho-Gaia astrometric solution (TGAS) catalogue to compute the velocity fields yielded by the radial (VR), azimuthal (Vϕ),and vertical (Vz) components of associated Galactocentric velocity. We search in particular for variation in all three velocity components with distance above and below the disc mid-plane, as well as how each component of Vz (line-of-sight and tangential velocity projections) modifies the obtained vertical structure. To study the dependence of velocity on proper motion and distance, we use two main samples: a RAVE sample including proper motions from the Tycho-2, PPMXL, and UCAC4 catalogues, and a RAVE–TGAS sample with inferred distances and proper motions from the TGAS and UCAC5 catalogues. In both samples, we identify asymmetries in VR and Vz. Below the plane, we find the largest radial gradient to be ∂VR/∂R = −7.01 ± 0.61 km s−1 kpc−1, in agreement with recent studies. Above the plane, we find a similar gradient with ∂VR/∂R = −9.42 ± 1.77 km s−1 kpc−1. By comparing our results with previous studies, we find that the structure in Vz is strongly dependent on the adopted proper motions. Using the Galaxia Milky Way model, we demonstrate that distance uncertainties can create artificial wave-like patterns. In contrast to previous suggestions of a breathing mode seen in RAVE data, our results support a combination of bending and breathing modes, likely generated by a combination of external or internal and external mechanisms.Funding for RAVE has been provided by the Australian Astronomical Observatory; the Leibniz-Institut fĂŒr Astrophysik Potsdam (AIP); the Australian National University; the Australian Research Council; the French National Research Agency; the German Research Foundation (SPP 1177 and SFB 881); the European Research Council (ERC-StG 240271 Galactica); the Istituto Nazionale di Astrofisica at Padova; the Johns Hopkins University; the National Science Foundation of the USA (AST-0908326); the W. M. Keck foundation; the Macquarie University; the Netherlands Research School for Astronomy; the Natural Sciences and Engineering Research Council of Canada; the Slovenian Research Agency (research core funding No. P1-0188); the Swiss National Science Foundation; the Science & Technology Facilities Council of the UK; Opticon; Strasbourg Observatory; and the Universities of Groningen, Heidelberg, and Sydney. The RAVE website is https://www.rave-survey.org. EKG acknowledges support by Sonderforschungsbereich ‘The Milky Way System’ (SFB 881) of the German Research Foundation (DFG), particularly through subproject A5
    • 

    corecore