746 research outputs found
Synthesis and Assembly of Dipolar Heterostructured Tetrapods: Colloidal Polymers with âGiant tert-butylâ Groups
We report on the first synthesis of a heterostructured semiconductor tetrapod from CdSe@CdS that carries a single dipolar nanoparticle tip from a coreâshell colloid of Au@Co. A four-step colloidal total synthesis was developed, where the key step in the synthesis was the selective deposition of a single AuNP tip onto a CdSe@CdS tetrapod under UV-irradiation. Synthetic accessibility to this dipolar heterostructured tetrapod enabled the use of these as colloidal monomers to form colloidal polymers that carry the semiconductor tetrapod as a side chain group attached to the CoNP colloidal polymer main chain. The current report details a number of novel discoveries on the selective synthesis of an asymmetric heterostructured tetrapod that is capable of 1D dipolar assembly into colloidal polymers that carry tetrapods as side chain groups that mimic âgiant tert-butyl groupsâ
Recommended from our members
A method for treating hourglass patterns
Hourglassing is a problem frequently encountered in numerical simulations of fluid and solid dynamics. The problem arises because certain volume-preserving distortions of cell shape produce no restoring forces. The result is an unrestricted drifting mode in the velocity field that leads to severe distortions of the computational mesh. These distortions cause large errors in the numerical approximations of the equations of motion. The drift may also allow adjacent vertices to get very close to each other. This results in the computational time step based on a Courant stability condition to become very small, effectively halting the calculation. We describe a mathematical formalism that identifies and selectively damps the hourglass patterns. The damping is constructed to preserve the physical aspects of the solution while maintaining a reasonable computational mesh. We further describe the implementation of our scheme in a 2D hydro code, and show the relative improvement in the results of six different test problems that we calculated
Automatic 3D facial model and texture reconstruction from range scans
This paper presents a fully automatic approach to fitting a generic facial model to detailed range scans of human faces to reconstruct 3D facial models and textures with no manual intervention (such as specifying landmarks). A Scaling Iterative Closest Points (SICP) algorithm is introduced to compute the optimal rigid registrations between the generic model and the range scans with different sizes. And then a new template-fitting method, formulated in an optmization framework of minimizing the physically based elastic energy derived from thin shells, faithfully reconstructs the surfaces and the textures from the range scans and yields dense point correspondences across the reconstructed facial models. Finally, we demonstrate a facial expression transfer method to clone facial expressions from the generic model onto the reconstructed facial models by using the deformation transfer technique
Further development of the talent development environment questionnaire for sport.
Given the significance of monitoring the critical environmental factors that facilitate athlete performance, this two-phase research aimed to validate and refine the revised Talent Development Environment Questionnaire (TDEQ). The TDEQ is a multidimensional self-report scale that assesses talented athletesâ environmental experiences. Study 1 (the first phase) involved the examination of the revised TDEQ through an exploratory factor analysis (n = 363). This exploratory investigationidentified a 28-item five-factor structure (i.e., TDEQ-5) with adequate internal consistency. Study 2 (the second phase) examined the factorial structure of the TDEQ-5, including convergent validity, discriminant validity, and group invariance (i.e., gender and sports type). The second phase was carried out with 496 talented athletes through the application of confirmatory factor analyses and multigroup invariance tests. The results supported the convergent validity, discriminant validity, and group invariance of the TDEQ-5. In conclusion, the TDEQ-5 with 25 items appears to be a reliable and valid scale for use in talent development environments
Magnetic pair breaking in disordered superconducting films
A theory for the effects of nonmagnetic disorder on the magnetic pair
breaking rate induced by paramagnetic impurities in quasi
two-dimensional superconductors is presented. Within the framework of a
strong-coupling theory for disordered superconductors, we find that the
disorder dependence of is determined by the disorder enhancements of
both the electron-phonon coupling and the spin-flip scattering rate. These two
effects have a tendency to cancel each other. With parameter values appropriate
for Pb_{0.9} Bi_{0.1}, we find a pair breaking rate that is very weakly
dependent on disorder for sheet resistances 0 < R < 2.5 kOhm, in agreement with
a recent experiment by Chervenak and Valles.Comment: 6 pp., REVTeX, epsf, 2 eps figs, final version as publishe
Stress corrosion cracking in Al-Zn-Mg-Cu aluminum alloys in saline environments
Copyright 2013 ASM International. This paper was published in Metallurgical and Materials Transactions A, 44A(3), 1230 - 1253, and is made
available as an electronic reprint with the permission of ASM International. One print or electronic copy may
be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via
electronic or other means, duplications of any material in this paper for a fee or for commercial purposes, or
modification of the content of this paper are prohibited.Stress corrosion cracking of Al-Zn-Mg-Cu (AA7xxx) aluminum alloys exposed to saline environments at temperatures ranging from 293 K to 353 K (20 °C to 80 °C) has been reviewed with particular attention to the influences of alloy composition and temper, and bulk and local environmental conditions. Stress corrosion crack (SCC) growth rates at room temperature for peak- and over-aged tempers in saline environments are minimized for Al-Zn-Mg-Cu alloys containing less than ~8 wt pct Zn when Zn/Mg ratios are ranging from 2 to 3, excess magnesium levels are less than 1 wt pct, and copper content is either less than ~0.2 wt pct or ranging from 1.3 to 2 wt pct. A minimum chloride ion concentration of ~0.01 M is required for crack growth rates to exceed those in distilled water, which insures that the local solution pH in crack-tip regions can be maintained at less than 4. Crack growth rates in saline solution without other additions gradually increase with bulk chloride ion concentrations up to around 0.6 M NaCl, whereas in solutions with sufficiently low dichromate (or chromate), inhibitor additions are insensitive to the bulk chloride concentration and are typically at least double those observed without the additions. DCB specimens, fatigue pre-cracked in air before immersion in a saline environment, show an initial period with no detectible crack growth, followed by crack growth at the distilled water rate, and then transition to a higher crack growth rate typical of region 2 crack growth in the saline environment. Time spent in each stage depends on the type of pre-crack (âpop-inâ vs fatigue), applied stress intensity factor, alloy chemistry, bulk environment, and, if applied, the external polarization. Apparent activation energies (E a) for SCC growth in Al-Zn-Mg-Cu alloys exposed to 0.6 M NaCl over the temperatures ranging from 293 K to 353 K (20 °C to 80 °C) for under-, peak-, and over-aged low-copper-containing alloys (~0.8 wt pct), they are typically ranging from 20 to 40 kJ/mol for under- and peak-aged alloys, and based on limited data, around 85 kJ/mol for over-aged tempers. This means that crack propagation in saline environments is most likely to occur by a hydrogen-related process for low-copper-containing Al-Zn-Mg-Cu alloys in under-, peak- and over-aged tempers, and for high-copper alloys in under- and peak-aged tempers. For over-aged high-copper-containing alloys, cracking is most probably under anodic dissolution control. Future stress corrosion studies should focus on understanding the factors that control crack initiation, and insuring that the next generation of higher performance Al-Zn-Mg-Cu alloys has similar longer crack initiation times and crack propagation rates to those of the incumbent alloys in an over-aged condition where crack rates are less than 1 mm/month at a high stress intensity factor
Quasiparticle Inelastic Lifetime from Paramagnons in Disordered Superconductors
The paramagnon contribution to the quasiparticle inelastic scattering rate in
disordered superconductors is presented. Using Anderson's exact eigenstate
formalism, it is shown that the scattering rate is Stoner enhanced and is
further enhanced by the disorder relative to the clean case in a manner similar
to the disorder enhancement of the long-range Coulomb contribution. The results
are discussed in connection with the possibility of conventional or
unconventional superconductivity in the borocarbides. The results are compared
to recent tunneling experiments on LuNiBC.Comment: 5 pages, no figure
Predictors of pre-operative cognitive impairment in meningioma patients over 60âyears old
Abstract
Background
The aim of this study was to assess the cognitive function of patients over 60âyears old with meningioma using a domain-specific neuropsychological test and to investigate the relevant factors affecting pre-operative cognitive decline in different subdomains.
Methods
We retrospectively investigated 46 intracranial meningioma patients between the ages of 60 and 85âyears. All patients underwent brain MRI and neuropsychological test. Tumor size, location, peritumoral edema, and medial temporal atrophy (MTA) were examined to determine the association with cognitive impairment. We performed a logistic regression analysis to examine the odds ratios (ORs) for cognitive decline of four subdomains: verbal memory, language, visuospatial, and executive functions.
Results
Tumor size and age were associated with executive dysfunction (OR 1.083, 95% confidence interval (CI) 1.006â1.166, and OR 1.209, 95% CI 1.018â1.436, respectively). There was no statistically significant association in other cognitive domains (language, verbal memory, and visuospatial function) with variables in regression analysis.
Conclusions
We conclude that tumor size and age are positively related with executive function in pre-operative meningioma patients over 60âyears old
- âŠ