33 research outputs found

    Spin-Textured Neutron Beams with Orbital Angular Momentum

    Full text link
    We present a rigorous theoretical framework underpinning the technique of spin-echo modulated small-angle neutron scattering (SEMSANS), and show how the technique can be extended in order to generate spin-textured neutron beams with orbital angular momentum (OAM) via birefringent neutron spin-polarization devices known as magnetic Wollaston prisms. Neutron OAM beams are mathematically characterized by a ``cork-screw'' phase singularity eiâ„“Ï•e^{i \ell \phi} about the propagation axis where â„“\ell is the OAM quantum number. To understand the precise relationship between the emergent OAM state and the variety of spin textures realized by various setups, we have developed a path-integral approach that in the interferometric limit makes a judicious use of magnetic Snell's law. We show that our proposed technique produces a complex two-dimensional pattern of spin-OAM entangled states which may be useful as a probe of quantum magnetic materials. We compare our path-integral approach to the well-known single-path Larmor precession model and present a pedagogical derivation of magnetic Snell's law of refraction for both massive and massless particles based on Maupertuis's action principle.Comment: 23 pages, 7 figures, Physical Review

    Correcting Aberrations of a Transverse-Field Neutron Resonance Spin Echo Instrument

    Full text link
    The neutron resonance spin echo (NRSE) technique has the potential to increase the Fourier time and energy resolution in neutron scattering by using radio-frequency (rf) neutron spin-flippers. However, aberrations arising from variations in the neutron path length between the rf flippers reduce the polarization. Here, we develop and test a transverse static-field magnet, a series of which are placed between the rf flippers, to correct for these aberrations. The prototype correction magnet was both simulated in an NRSE beamline using McStas, a Monte Carlo neutron ray-tracing software package, and measured using neutrons. The results from the prototype demonstrate that this static-field design corrects for transverse-field NRSE aberrations.Comment: 8 figures, 10 page

    Mesoporous silica formation mechanisms probed using combined Spin-Echo Modulated Small Angle Neutron Scattering (SEMSANS) and Small Angle Neutron Scattering (SANS)

    Get PDF
    International audienceThe initial formation stages of surfactant-templated silica thin films which grow at the air−water interface were studied using combined spin−echo modulated small-angle neutron scattering (SEMSANS) and small-angle neutron scattering (SANS). The films are formed from either a cationic surfactant or nonionic surfactant (C16EO8) in a dilute acidic solution by the addition of tetramethoxysilane. Previous work has suggested a twostage formation mechanism with mesostructured particle formation in the bulk solution driving film formation at the solution surface. From the SEMSANS data, it is possible to pinpoint accurately the time associated with the formation of large particles in solution that go on to form the film and to show their emergence is concomitant with the appearance of Bragg peaks in the SANS pattern, associated with the two-dimensional hexagonal order. The combination of SANS and SEMSANS allows a complete depiction of the steps of the synthesis that occur in the subphase

    Measurement of the vortex core in sub-100 nm Fe dots using polarized neutron scattering

    Get PDF
    We use polarized neutron scattering to obtain quantitative information about the magnetic state of sub-100 nm circular magnetic dots. Evidence for the transition from a single domain to a vortex state, as a function of the dot diameter and magnetic field, is found from magnetization curves and confirmed by micromagnetic and Monte-Carlo simulations. For 20 nm-thick Fe dots with diameters close to 60 nm, the vortex is the ground state. The magnetization of the vortex core (140 ± 50 emu/cm3) and its diameter (19 ± 4 nm) obtained from polarized neutron scattering are in agreement with simulations

    London Trauma Conference 2015

    Full text link

    NATO Advanced Study Institute : Time-dependent effects in disordered materials

    No full text
    corecore