85 research outputs found

    Triplet repeat RNA structure and its role as pathogenic agent and therapeutic target

    Get PDF
    This review presents detailed information about the structure of triplet repeat RNA and addresses the simple sequence repeats of normal and expanded lengths in the context of the physiological and pathogenic roles played in human cells. First, we discuss the occurrence and frequency of various trinucleotide repeats in transcripts and classify them according to the propensity to form RNA structures of different architectures and stabilities. We show that repeats capable of forming hairpin structures are overrepresented in exons, which implies that they may have important functions. We further describe long triplet repeat RNA as a pathogenic agent by presenting human neurological diseases caused by triplet repeat expansions in which mutant RNA gains a toxic function. Prominent examples of these diseases include myotonic dystrophy type 1 and fragile X-associated tremor ataxia syndrome, which are triggered by mutant CUG and CGG repeats, respectively. In addition, we discuss RNA-mediated pathogenesis in polyglutamine disorders such as Huntington's disease and spinocerebellar ataxia type 3, in which expanded CAG repeats may act as an auxiliary toxic agent. Finally, triplet repeat RNA is presented as a therapeutic target. We describe various concepts and approaches aimed at the selective inhibition of mutant transcript activity in experimental therapies developed for repeat-associated diseases

    Revision of AMBER Torsional Parameters for RNA Improves Free Energy Predictions for Tetramer Duplexes with GC and iGiC Base Pairs

    Get PDF
    All-atom force fields are important for predicting thermodynamic, structural, and dynamic properties of RNA. In this paper, results are reported for thermodynamic integration calculations of free energy differences of duplex formation when CG pairs in the RNA duplexes r(CCGG)2, r(GGCC)2, r(GCGC)2, and r(CGCG)2 are replaced by isocytidine–isoguanosine (iCiG) pairs. Agreement with experiment was improved when ε/ζ, α/γ, β, and χ torsional parameters in the AMBER99 force field were revised on the basis of quantum mechanical calculations. The revised force field, AMBER99TOR, brings free energy difference predictions to within 1.3, 1.4, 2.3, and 2.6 kcal/mol at 300 K, respectively, compared to experimental results for the thermodynamic cycles of CCGG → iCiCiGiG, GGCC → iGiGiCiC, GCGC → iGiCiGiC, and CGCG → iCiGiCiG. In contrast, unmodified AMBER99 predictions for GGCC → iGiGiCiC and GCGC → iGiCiGiC differ from experiment by 11.7 and 12.6 kcal/mol, respectively. In order to test the dynamic stability of the above duplexes with AMBER99TOR, four individual 50 ns molecular dynamics (MD) simulations in explicit solvent were run. All except r(CCGG)2 retained A-form conformation for ≥82% of the time. This is consistent with NMR spectra of r(iGiGiCiC)2, which reveal an A-form conformation. In MD simulations, r(CCGG)2 retained A-form conformation 52% of the time, suggesting that its terminal base pairs may fray. The results indicate that revised backbone parameters improve predictions of RNA properties and that comparisons to measured sequence dependent thermodynamics provide useful benchmarks for testing force fields and computational methods

    Long non-coding RNAs and cancer: a new frontier of translational research?

    Get PDF
    Author manuscriptTiling array and novel sequencing technologies have made available the transcription profile of the entire human genome. However, the extent of transcription and the function of genetic elements that occur outside of protein-coding genes, particularly those involved in disease, are still a matter of debate. In this review, we focus on long non-coding RNAs (lncRNAs) that are involved in cancer. We define lncRNAs and present a cancer-oriented list of lncRNAs, list some tools (for example, public databases) that classify lncRNAs or that scan genome spans of interest to find whether known lncRNAs reside there, and describe some of the functions of lncRNAs and the possible genetic mechanisms that underlie lncRNA expression changes in cancer, as well as current and potential future applications of lncRNA research in the treatment of cancer.RS is supported as a fellow of the TALENTS Programme (7th R&D Framework Programme, Specific Programme: PEOPLE—Marie Curie Actions—COFUND). MIA is supported as a PhD fellow of the FCT (Fundação para a Ciência e Tecnologia), Portugal. GAC is supported as a fellow by The University of Texas MD Anderson Cancer Center Research Trust, as a research scholar by The University of Texas System Regents, and by the Chronic Lymphocytic Leukemia Global Research Foundation. Work in GAC’s laboratory is supported in part by the NIH/ NCI (CA135444); a Department of Defense Breast Cancer Idea Award; Developmental Research Awards from the Breast Cancer, Ovarian Cancer, Brain Cancer, Multiple Myeloma and Leukemia Specialized Programs of Research Excellence (SPORE) grants from the National Institutes of Health; a 2009 Seena Magowitz–Pancreatic Cancer Action Network AACR Pilot Grant; the Laura and John Arnold Foundation and the RGK Foundation
    corecore