159 research outputs found

    Osmoregulation in zebrafish: ion transport mechanisms and functional regulation

    Get PDF
    Fish, like mammals, have to maintain their body fluid ionic and osmotic homeostasis through sophisticated iono-/osmoregulation mechanisms, which are conducted mainly by ionocytes of the gill (the skin in embryonic stages), instead of the renal tubular cells in mammals. Given the advantages in terms of genetic database availability and manipulation, zebrafish is an emerging model for research into regulatory and integrative physiology. At least five types of ionocytes, HR, NaR, NCC, SLC26, and KS cells, have been identified to carry out Na+ uptake/H+ secretion/NH4+ excretion, Ca2+ uptake, Na+/Cl- uptake, K+ secretion, and Cl- uptake/HCO3- secretion, respectively, through distinct sets of transporters. Several hormones, namely isotocin, prolactin, cortisol, stanniocalcin-1, calcitonin, endothelin-1, vitamin D, parathyorid hormone 1, catecholamines, and the renin-angiotensin-system, have been demonstrated to positively or negatively regulate ion transport through specific receptors at different ionocytes stages, at either the transcriptional/translational or posttranslational level. The knowledge obtained using zebrafish answered many long-term contentious or unknown issues in the field of fish iono-/osmoregulation. The homology of ion transport pathways and hormone systems also means that the zebrafish model informs studies on mammals or other animal species, thereby providing insights into related fields

    Recent progress and debates in molecular physiology of Na+ uptake in teleosts

    Get PDF
    How teleosts take up Na+ from the surrounding freshwater (FW) as well as the underlying mechanisms associated with this process have received considerable attention over the past 85 years. Owing to an enormous ion gradient between hypotonic FW and fish body fluids, teleosts gills have to actively absorb Na+ (via ionocytes) to compensate for the passive loss of Na+. To date, three models have been proposed for Na+ uptake in teleost ionocytes, including Na+/H+ exchanger (NHE)-mediated, acid-sensing ion channel (ASIC)-mediated, Na+-Cl- co-transporter (NCC)-mediated pathways. However, some debates regarding these models and unclear mechanisms still remain. To better understand how teleosts take up Na+ from FW, this mini-review summarizes the main progress and related regulatory mechanisms of Na+ uptake, and discusses some of the challenges to the current models

    Perfused Gills Reveal Fundamental Principles of pH Regulation and Ammonia Homeostasis in the Cephalopod Octopus vulgaris

    Get PDF
    In contrast to terrestrial animals most aquatic species can be characterized by relatively higher blood [Formula: see text] concentrations despite its potential toxicity to the central nervous system. Although many aquatic species excrete [Formula: see text] via specialized epithelia little information is available regarding the mechanistic basis for NH3/[Formula: see text] homeostasis in molluscs. Using perfused gills of Octopus vulgaris we studied acid-base regulation and ammonia excretion pathways in this cephalopod species. The octopus gill is capable of regulating ammonia (NH3/[Formula: see text]) homeostasis by the accumulation of ammonia at low blood levels (<260 μM) and secretion at blood ammonia concentrations exceeding in vivo levels of 300 μM. [Formula: see text] transport is sensitive to the adenylyl cyclase inhibitor KH7 indicating that this process is mediated through cAMP-dependent pathways. The perfused octopus gill has substantial pH regulatory abilities during an acidosis, accompanied by an increased secretion of [Formula: see text]. Immunohistochemical and qPCR analyses revealed tissue specific expression and localization of Na+/K+-ATPase, V-type H+-ATPase, Na+/H+-exchanger 3, and Rhesus protein in the gill. Using the octopus gill as a molluscan model, our results highlight the coupling of acid-base regulation and nitrogen excretion, which may represent a conserved pH regulatory mechanism across many marine taxa

    Protein tyrosine phosphatase receptor type O (Ptpro) regulates cerebellar formation during zebrafish development through modulating Fgf signaling

    Get PDF
    Protein activities controlled by receptor protein tyrosine phosphatases (RPTPs) play comparably important roles in transducing cell surface signals into the cytoplasm by protein tyrosine kinases. Previous studies showed that several RPTPs are involved in neuronal generation, migration, and axon guidance in Drosophila, and the vertebrate hippocampus, retina, and developing limbs. However, whether the protein tyrosine phosphatase type O (ptpro), one kind of RPTP, participates in regulating vertebrate brain development is largely unknown. We isolated the zebrafish ptpro gene and found that its transcripts are primarily expressed in the embryonic and adult central nervous system. Depletion of zebrafish embryonic Ptpro by antisense morpholino oligonucleotide knockdown resulted in prominent defects in the forebrain and cerebellum, and the injected larvae died on the 4th day post-fertilization (dpf). We further investigated the function of ptpro in cerebellar development and found that the expression of ephrin-A5b (efnA5b), a Fgf signaling induced cerebellum patterning factor, was decreased while the expression of dusp6, a negative-feedback gene of Fgf signaling in the midbrain-hindbrain boundary region, was notably induced in ptpro morphants. Further analyses demonstrated that cerebellar defects of ptpro morphants were partially rescued by inhibiting Fgf signaling. Moreover, Ptpro physically interacted with the Fgf receptor 1a (Fgfr1a) and dephosphorylated Fgfr1a in a dose-dependant manner. Therefore, our findings demonstrate that Ptpro activity is required for patterning the zebrafish embryonic brain. Specifically, Ptpro regulates cerebellar formation during zebrafish development through modulating Fgf signaling. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00018-013-1259-7) contains supplementary material, which is available to authorized users

    Evolution of extreme stomach pH in bilateria inferred from gastric alkalization mechanisms in basal deuterostomes

    Get PDF
    The stomachs of most vertebrates operate at an acidic pH of 2 generated by the gastric H+/K+-ATPase located in parietal cells. The acidic pH in stomachs of vertebrates is believed to aid digestion and to protect against environmental pathogens. Little attention has been placed on whether acidic gastric pH regulation is a vertebrate character or a deuterostome ancestral trait. Here, we report alkaline conditions up to pH 10.5 in the larval digestive systems of ambulacraria (echinoderm + hemichordate), the closest relative of the chordate. Microelectrode measurements in combination with specific inhibitors for acid-base transporters and ion pumps demonstrated that the gastric alkalization machinery in sea urchin larvae is mainly based on direct H+ secretion from the stomach lumen and involves a conserved set of ion pumps and transporters. Hemichordate larvae additionally utilized HCO 3- transport pathways to generate even more alkaline digestive conditions. Molecular analyses in combination with acidification experiments supported these findings and identified genes coding for ion pumps energizing gastric alkalization. Given that insect larval guts were also reported to be alkaline, our discovery raises the hypothesis that the bilaterian ancestor utilized alkaline digestive system while the vertebrate lineage has evolved a strategy to strongly acidify their stomachs

    Discovery and characterization of medaka miRNA genes by next generation sequencing platform

    Get PDF
    Background MicroRNAs (miRNAs) are endogenous non-protein-coding RNA genes which exist in a wide variety of organisms, including animals, plants, virus and even unicellular organisms. Medaka (Oryzias latipes) is a useful model organism among vertebrate animals. However, no medaka miRNAs have been investigated systematically. It is beneficial to conduct a genome-wide miRNA discovery study using the next generation sequencing (NGS) technology, which has emerged as a powerful sequencing tool for high-throughput analysis. Results In this study, we adopted ABI SOLiD platform to generate small RNA sequence reads from medaka tissues, followed by mapping these sequence reads back to medaka genome. The mapped genomic loci were considered as candidate miRNAs and further processed by a support vector machine (SVM) classifier. As result, we identified 599 novel medaka pre-miRNAs, many of which were found to encode more than one isomiRs. Besides, additional minor miRNAs (also called miRNA star) can be also detected with the improvement of sequencing depth. These quantifiable isomiRs and minor miRNAs enable us to further characterize medaka miRNA genes in many aspects. First of all, many medaka candidate pre-miRNAs position close to each other, forming many miRNA clusters, some of which are also conserved across other vertebrate animals. Secondly, during miRNA maturation, there is an arm selection preference of mature miRNAs within precursors. We observed the differences on arm selection preference between our candidate pre-miRNAs and their orthologous ones. We classified these differences into three categories based on the distribution of NGS reads. Finally, we also investigated the relationship between conservation status and expression level of miRNA genes. We concluded that the evolutionally conserved miRNAs were usually the most abundant ones. Conclusions Medaka is a widely used model animal and usually involved in many biomedical studies, including the ones on development biology. Identifying and characterizing medaka miRNA genes would benefit the studies using medaka as a model organism

    Comparison of Calcium Balancing Strategies During Hypothermic Acclimation of Tilapia (Oreochromis mossambicus) and Goldfish (Carassius auratus)

    Get PDF
    The body temperatures of teleost species fluctuate following changes in the aquatic environment. As such, decreased water temperature lowers the rates of biochemical reactions and affects many physiological processes, including active transport-dependent ion absorption. Previous studies have focused on the impacts of low temperature on the plasma ion concentrations or membrane transporters in fishes. However, very few in vivo or organism-level studies have been performed to more thoroughly elucidate the process of acclimation to low temperatures. In the present study, we compared the strategies for cold acclimation between stenothermic tilapia and eurythermic goldfish. Whole-body calcium content was more prominently diminished in tilapia than in goldfish after long-term cold exposure. This difference can be attributed to alterations in the transportation parameters for Ca2+ influx, i.e., maximum velocity (Vmax) and binding affinity (1/Km). There was also a significant difference in the regulation of Ca2+ efflux between the two fishes. Transcript levels for Ca2+ related transporters, including the Na+/Ca2+ exchanger and epithelial Ca2+ channel, were similarly regulated in both fishes. However, upregulation of plasma membrane Ca2+ATPase expression was more pronounced in goldfish than in tilapia. In addition, enhanced Na+/K+-ATPase abundance, which provides the major driving force for ion absorption, was only detected in tilapia, while upregulated Na+/K+-ATPase activity was only detected in goldfish. Based on the results of the present study, we have found that goldfish and tilapia differentially regulate gill epithelial plasma membrane Ca2+-ATPase (PMCA) expression and Na+/K+-ATPase activity in response to cold environments. These regulatory differences are potentially linked to more effective regulation of Ca2+ influx kinetics and better maintenance of whole body calcium content in goldfish than in tilapia

    New insights into ion regulation of cephalopod molluscs: a role of epidermal ionocytes in acid-base regulation during embryogenesis

    Get PDF
    The constraints of an active life in a pelagic habitat led to numerous convergent morphological and physiological adaptations that enable cephalopod molluscs and teleost fishes to compete for similar resources. Here we show for the first time that such convergent developments are also found in the ontogenetic progression of ion regulatory tissues: as in teleost fish epidermal ionocytes scattered on skin and yolk sac of cephalopod embryos appear to be responsible for ionic and acid-base regulation before gill epithelia become functional. Ion and acid-base regulation is crucial in cephalopod embryos, as they are surrounded by a hypercapnic egg fluid with a pCO2 of 0.2-0.4 kPa. Epidermal ionocytes were characterized via immunohistochemistry, in situ hybridization and vital dye staining techniques. We found one group of cells that is recognized by Concavalin A and MitoTracker, which also expresses Na+/H+ exchangers (NHE) and Na+/K+-ATPase. Similar to findings obtained in teleosts these NHE3-rich cells take up sodium in exchange for protons, illustrating the energetic superiority of NHE based proton excretion in marine systems. In vivo electrophysiological techniques demonstrated that acid equivalents are secreted by the yolk and skin integument. Intriguingly, epidermal ionocytes of cephalopod embryos are ciliated as demonstrated by scanning electron microscopy suggesting a dual function of epithelial cells in water convection and ion regulation. These findings add significant knowledge to our mechanistic understanding of hypercapnia tolerance in marine organisms, as it demonstrates that marine taxa which were identified as powerful acid-base regulators during hypercapnic challenges already exhibit strong acid-base regulatory abilities during embryogenesis

    Zona Pellucida Domain-Containing Protein β-Tectorin is Crucial for Zebrafish Proper Inner Ear Development

    Get PDF
    BACKGROUND: The zona pellucida (ZP) domain is part of many extracellular proteins with diverse functions from structural components to receptors. The mammalian β-tectorin is a protein of 336 amino acid residues containing a single ZP domain and a putative signal peptide at the N-terminus of the protein. It is 1 component of a gel-like structure called the tectorial membrane which is involved in transforming sound waves into neuronal signals and is important for normal auditory function. β-Tectorin is specifically expressed in the mammalian and avian inner ear. METHODOLOGY/PRINCIPAL FINDINGS: We identified and cloned the gene encoding zebrafish β-tectorin. Through whole-mount in situ hybridization, we demonstrated that β-tectorin messenger RNA was expressed in the otic placode and specialized sensory patch of the inner ear during zebrafish embryonic stages. Morpholino knockdown of zebrafish β-tectorin affected the position and number of otoliths in the ears of morphants. Finally, swimming behaviors of β-tectorin morphants were abnormal since the development of the inner ear was compromised. CONCLUSIONS/SIGNIFICANCE: Our results reveal that zebrafish β-tectorin is specifically expressed in the zebrafish inner ear, and is important for regulating the development of the zebrafish inner ear. Lack of zebrafish β-tectorin caused severe defects in inner ear formation of otoliths and function

    Reverse Effect of Mammalian Hypocalcemic Cortisol in Fish: Cortisol Stimulates Ca2+ Uptake via Glucocorticoid Receptor-Mediated Vitamin D3 Metabolism

    Get PDF
    Cortisol was reported to downregulate body-fluid Ca2+ levels in mammals but was proposed to show hypercalcemic effects in teleostean fish. Fish, unlike terrestrial vertebrates, obtain Ca2+ from the environment mainly via the gills and skin rather than by dietary means, and have to regulate the Ca2+ uptake functions to cope with fluctuating Ca2+ levels in aquatic environments. Cortisol was previously found to regulate Ca2+ uptake in fish; however, the molecular mechanism behind this is largely unclear. Zebrafish were used as a model to explore this issue. Acclimation to low-Ca2+ fresh water stimulated Ca2+ influx and expression of epithelial calcium channel (ecac), 11β-hydroxylase and the glucocorticoid receptor (gr). Exogenous cortisol increased Ca2+ influx and the expressions of ecac and hydroxysteroid 11-beta dehydrogenase 2 (hsd11b2), but downregulated 11β-hydroxylase and the gr with no effects on other Ca2+ transporters or the mineralocorticoid receptor (mr). Morpholino knockdown of the GR, but not the MR, was found to impair zebrafish Ca2+ uptake function by inhibiting the ecac expression. To further explore the regulatory mechanism of cortisol in Ca2+ uptake, the involvement of vitamin D3 was analyzed. Cortisol stimulated expressions of vitamin D-25hydroxylase (cyp27a1), cyp27a1 like (cyp27a1l), 1α-OHase (cyp27b1) at 3 dpf through GR, the first time to demonstrate the relationship between cortisol and vitamin D3 in fish. In conclusion, cortisol stimulates ecac expression to enhance Ca2+ uptake functions, and this control pathway is suggested to be mediated by the GR. Lastly, cortisol also could mediate vitamin D3 signaling to stimulate Ca2+ uptake in zebrafish
    corecore