207 research outputs found
Experiences of interactive ultrasound examination among women at risk of preterm birth: a qualitative study
Background: Pregnant women who are at risk of preterm birth are often stressed, anxious and depressed because of worries and fears related to the health of the unborn baby, their own health and uncertainty about the future. Only a few studies have assessed the types of psychological support that would relieve these stress symptoms among women with high-risk pregnancies. The aim of this study was to describe 1) how women at risk of preterm birth experienced an interactive 3/4-dimensional (3/4D) ultrasound examination, and 2) their need for psychological support during the antenatal period.Methods: This qualitative study was conducted at one university hospital in Finland in 2017. Women with a singleton pregnancy of 26-32 gestational weeks (gwks) were included in the study. The interactive 3/4D ultrasound included a joint observation of the baby, based on the mother's wishes, with an obstetrician and psychologist. After the examination, the experiences were explored with a semi-structured interview. The data was analyzed using inductive thematic analysis.Results: The women enjoyed the fact that the staff were focused on her fetus and genuinely present during the session and also enabled the women to actively participate. Watching the baby and her/his activities made the baby more concrete and relieved their concerns. The need for additional psychological support varied individually.Conclusions: Interactive ultrasound examination is an interesting way to awaken mental images, increase attachment, and reduce stress. The results imply that an interactive way of jointly looking at the fetus supports pregnant women at risk of preterm birth and may be useful in clinical practice.</p
Treatment and Prognosis of Radiation-Associated Breast Angiosarcoma in a Nationwide Population
Background Radiation-associated angiosarcoma of the breast (RAASB) is an aggressive malignancy that is increasing in incidence. Only a few previous population-based studies have reported the results of RAASB treatment. Methods A search for RAASB patients was carried out in the Finnish Cancer Registry, and treatment data were collected to identify prognostic factors for survival. Results Overall, 50 RAASB patients were identified. The median follow-up time was 5.4 years (range 0.4-15.6), and the 5-year overall survival rate was 69%. Forty-seven (94%) patients were operated on with curative intent. Among these patients, the 5-year local recurrence-free survival, distant recurrence-free survival, and overall survival rates were 62%, 75%, and 74%, respectively. A larger planned surgical margin was associated with improved survival. Conclusions We found that the majority of RAASB patients were eligible for radical surgical management in this population-based analysis. With radical surgery, the prognosis is relatively good.Peer reviewe
Structural Insight into How Bacteria Prevent Interference between Multiple Divergent Type IV Secretion Systems
Prokaryotes use type IV secretion systems (T4SSs) to translocate substrates (e.g., nucleoprotein, DNA, and protein) and/or elaborate surface structures (i.e., pili or adhesins). Bacterial genomes may encode multiple T4SSs, e.g., there are three functionally divergent T4SSs in some Bartonella species (vir, vbh, and trw). In a unique case, most rickettsial species encode a T4SS (rvh) enriched with gene duplication. Within single genomes, the evolutionary and functional implications of cross-system interchangeability of analogous T4SS protein components remains poorly understood. To lend insight into cross-system interchangeability, we analyzed the VirB8 family of T4SS channel proteins. Crystal structures of three VirB8 and two TrwG Bartonella proteins revealed highly conserved C-terminal periplasmic domain folds and dimerization interfaces, despite tremendous sequence divergence. This implies remarkable structural constraints for VirB8 components in the assembly of a functional T4SS. VirB8/TrwG heterodimers, determined via bacterial two-hybrid assays and molecular modeling, indicate that differential expression of trw and vir systems is the likely barrier to VirB8-TrwG interchangeability. We also determined the crystal structure of Rickettsia typhi RvhB8-II and modeled its coexpressed divergent paralog RvhB8-I. Remarkably, while RvhB8-I dimerizes and is structurally similar to other VirB8 proteins, the RvhB8-II dimer interface deviates substantially from other VirB8 structures, potentially preventing RvhB8-I/RvhB8-II heterodimerization. For the rvh T4SS, the evolution of divergent VirB8 paralogs implies a functional diversification that is unknown in other T4SSs. Collectively, our data identify two different constraints (spatiotemporal for Bartonella trw and vir T4SSs and structural for rvh T4SSs) that mediate the functionality of multiple divergent T4SSs within a single bacterium.
IMPORTANCE:
Assembly of multiprotein complexes at the right time and at the right cellular location is a fundamentally important task for any organism. In this respect, bacteria that express multiple analogous type IV secretion systems (T4SSs), each composed of around 12 different components, face an overwhelming complexity. Our work here presents the first structural investigation on factors regulating the maintenance of multiple T4SSs within a single bacterium. The structural data imply that the T4SS-expressing bacteria rely on two strategies to prevent cross-system interchangeability: (i) tight temporal regulation of expression or (ii) rapid diversification of the T4SS components. T4SSs are ideal drug targets provided that no analogous counterparts are known from eukaryotes. Drugs targeting the barriers to cross-system interchangeability (i.e., regulators) could dysregulate the structural and functional independence of discrete systems, potentially creating interference that prevents their efficient coordination throughout bacterial infection.</p
Single-Peptide TR-FRET Detection Platform for Cysteine-Specific Post-Translational Modifications
Post-translational modifications (PTMs) are one of the most important regulatory mechanisms in cells, and they play key roles in cell signaling both in health and disease. PTM catalyzing enzymes have become significant drug targets, and therefore, tremendous interest has been focused on the development of broad-scale assays to monitor several different PTMs with a single detection platform. Most of the current methodologies suffer from low throughput or rely on antibody recognition, increasing the assay costs, and decreasing the multifunctionality of the assay. Thus, we have developed a sensitive time-resolved Forster resonance energy transfer (TR-FRET) detection method for PTMs of cysteine residues using a single-peptide approach performed in a 384-well format. In the developed assay, the enzyme-specific biotinylated substrate peptide is post-translationally modified at the cysteine residue, preventing the subsequent thiol coupling with a reactive AlexaFluor 680 acceptor dye. In the absence of enzymatic activity, increase in the TR-FRET signal between the biotin-bound Eu(III)-labeled streptavidin donor and the cysteine-coupled AlexaFluor 680 acceptor dye is observed. We demonstrate the detection concept with cysteine modifying S-nitrosylation and ADP-ribosylation reactions using a chemical nitric oxide donor S-nitrosoglutathione and enzymatic ADP-ribosyltransferase PtxS1-subunit of pertussis toxin, respectively. As a proof of concept, three peptide substrates derived from the small GTPase K-Ras and the inhibitory alpha-subunit of the heterotrimeric G-protein G alpha i showed expected functionality in both chemical and enzymatic assays. Measurements yielded signal-to-background ratios of 28.7, 33.0, and 8.7 between the modified and the nonmodified substrates for the three peptides in the S-nitrosylation assay, 5.8 in the NAD(+) hydrolysis assay, and 6.8 in the enzymatic ADP-ribosyltransferase inhibitor dose-response assay. The developed antibody-free assay for cysteine-modifying enzymes provides a detection platform with low nanomolar peptide substrate consumption, and the assay is potentially applicable to investigate various cysteine-modifying enzymes in a high throughput compatible format
Evaluating Biosphere Model Estimates of the Start of the Vegetation Active Season in Boreal Forests by Satellite Observations
The objective of this study was to assess the performance of the simulated start of the photosynthetically active season by a large-scale biosphere model in boreal forests in Finland with remote sensing observations. The start of season for two forest types, evergreen needle-and deciduous broad-leaf, was obtained for the period 2003-2011 from regional JSBACH (Jena Scheme for Biosphere-Atmosphere Hamburg) runs, driven with climate variables from a regional climate model. The satellite-derived start of season was determined from daily Moderate Resolution Imaging Spectrometer (MODIS) time series of Fractional Snow Cover and the Normalized Difference Water Index by applying methods that were targeted to the two forest types. The accuracy of the satellite-derived start of season in deciduous forest was assessed with bud break observations of birch and a root mean square error of seven days was obtained. The evaluation of JSBACH modelled start of season dates with satellite observations revealed high spatial correspondence. The bias was less than five days for both forest types but showed regional differences that need further consideration. The agreement with satellite observations was slightly better for the evergreen than for the deciduous forest. Nonetheless, comparison with gross primary production (GPP) determined from CO2 flux measurements at two eddy covariance sites in evergreen forest revealed that the JSBACH-simulated GPP was higher in early spring and led to too-early simulated start of season dates. Photosynthetic activity recovers differently in evergreen and deciduous forests. While for the deciduous forest calibration of phenology alone could improve the performance of JSBACH, for the evergreen forest, changes such as seasonality of temperature response, would need to be introduced to the photosynthetic capacity to improve the temporal development of gross primary production.Peer reviewe
Winter Bird Assemblages in Rural and Urban Environments: A National Survey
Urban development has a marked effect on the ecological and behavioural traits of many living
organisms, including birds. In this paper, we analysed differences in the numbers of wintering
birds between rural and urban areas in Poland. We also analysed species richness
and abundance in relation to longitude, latitude, human population size, and landscape
structure. All these parameters were analysed using modern statistical techniques incorporating
species detectability. We counted birds in 156 squares (0.25 km2 each) in December
2012 and again in January 2013 in locations in and around 26 urban areas across Poland
(in each urban area we surveyed 3 squares and 3 squares in nearby rural areas). The influence
of twelve potential environmental variables on species abundance and richness was
assessed with Generalized Linear Mixed Models, Principal Components and Detrended
Correspondence Analyses. Totals of 72 bird species and 89,710 individual birds were recorded
in this study. On average (±SE) 13.3 ± 0.3 species and 288 ± 14 individuals were recorded
in each square in each survey. A formal comparison of rural and urban areas
revealed that 27 species had a significant preference; 17 to rural areas and 10 to urban areas. Moreover, overall abundance in urban areas was more than double that of rural
areas. There was almost a complete separation of rural and urban bird communities. Significantly
more birds and more bird species were recorded in January compared to December.
We conclude that differences between rural and urban areas in terms of winter conditions
and the availability of resources are reflected in different bird communities in the two
environments
Kioto+ mission : Global and accurate monitoring of forest, land cover and carbon
This publication presents the results of a feasibility study on a proposed superhigh
resolution satellite mission Kioto+. The study was conducted by an
international consortium in response to the 2005 call for ideas for Earth Explorer
missions of the European Space Agency (ESA).
Kioto+ offers reliable and global data to near in-situ measurement accuracy on
land cover and forest cover. It also gives information about their development
over time. A super-high resolution optical instrument is proposed to achieve
statistically representative and precise measurements. The information will
greatly improve our understanding of the global carbon and water cycles, and the
credibility of estimates of terrestrial carbon storage. The imagery will also give
globally accurate training and validation data for wall-to-wall imaging
instruments. The mission is named Kioto+ because the projected timescale of the
mission (post-2011) means that it will primarily have relevance to successor
treaties of the Kyoto Protocol to the FCCC of the United Nations
Interplay between manganese and iron in pneumococcal pathogenesis: role of the orphan response regulator RitR
Streptococcus pneumoniae (the pneumococcus) is a major human pathogen that is carried asymptomatically in the nasopharynx by up to 70% of the human population. Translocation of the bacteria into internal sites can cause a range of diseases, such as pneumonia, otitis media, meningitis, and bacteremia. This transition from nasopharynx to growth at systemic sites means that the pneumococcus needs to adjust to a variety of environmental conditions, including transition metal ion availability. Although it is an important nutrient, iron potentiates oxidative stress, and it is established that in S. pneumoniae, expression of iron transport systems and proteins that protect against oxidative stress are regulated by an orphan response regulator, RitR. In this study, we investigated the effect of iron and manganese ion availability on the growth of a ritR mutant. Deletion of ritR led to impaired growth of bacteria in high-iron medium, but this phenotype could be suppressed with the addition of manganese. Measurement of metal ion accumulation indicated that manganese prevents iron accumulation. Furthermore, the addition of manganese also led to a reduction in the amount of hydrogen peroxide produced by bacterial cells. Studies of virulence in a murine model of infection indicated that RitR was not essential for pneumococcal survival and suggested that derepression of iron uptake systems may enhance the survival of pneumococci in some niches
- …