267 research outputs found

    MicroRNA-196a links human body fat distribution to adipose tissue extracellular matrix composition

    Get PDF
    Abstract Background: Abdominal fat mass is associated with metabolic risk whilst gluteal femoral fat is paradoxically protective. MicroRNAs are known to be necessary for adipose tissue formation and function but their role in regulating human fat distribution remains largely unexplored. Methods: An initial microarray screen of abdominal subcutaneous and gluteal adipose tissue, with validatory qPCR, identified microRNA-196a as being strongly differentially expressed between gluteal and abdominal subcutaneous adipose tissue. Findings: We found that rs11614913, a SNP within pre-miR-196a-2 at the HOXC locus, is an eQTL for miR-196a expression in abdominal subcutaneous adipose tissue (ASAT). Observations in large cohorts showed that rs11614913 increased waist-to-hip ratio, which was driven specifically by an expansion in ASAT. In further experiments, rs11614913 was associated with adipocyte size. Functional studies and transcriptomic profiling of miR-196a knock-down pre-adipocytes revealed a role for miR-196a in regulating pre-adipocyte proliferation and extracellular matrix pathways. Interpretation: These data identify a role for miR-196a in regulating human body fat distribution.: This work was supported by the Medical Research Council and Novo Nordisk UK Research Foundation (G1001959) and Swedish Research Council. We acknowledge the OBB-NIHR Oxford Biomedical Research Centre and the British Heart Foundation (BHF) (RG/17/1/32663). Work performed at the MRC Epidemiology Unit was funded by the United Kingdom's Medical Research Council through grants MC_UU_12015/1, MC_PC_13046, MC_PC_13048 and MR/L00002/1

    Rare genetic variation in UNC13A may modify survival in amyotrophic lateral sclerosis

    Get PDF
    Our objective was to identify whether rare genetic variation in amyotrophic lateral sclerosis (ALS) candidate survival genes modifies ALS survival. Candidate genes were selected based on evidence for modifying ALS survival. Each tail of the extreme 1.5% of survival was selected from the UK MND DNA Bank and all samples available underwent whole genome sequencing. A replication set from the Netherlands was used for validation. Sequences of candidate survival genes were extracted and variants passing quality control with a minor allele frequency ≤0.05 were selected for association testing. Analysis was by burden testing using SKAT. Candidate survival genes UNC13A, KIFAP3, and EPHA4 were tested for association in a UK sample comprising 25 short survivors and 25 long survivors. Results showed that only SNVs in UNC13A were associated with survival (p = 6.57 × 10−3). SNV rs10419420:G > A was found exclusively in long survivors (3/25) and rs4808092:G > A exclusively in short survivors (4/25). These findings were not replicated in a Dutch sample. In conclusion, population specific rare variants of UNC13A may modulate survival in ALS

    Atrial fibrillation genetic risk differentiates cardioembolic stroke from other stroke subtypes

    Get PDF
    Objective: We sought to assess whether genetic risk factors for atrial fibrillation (AF) can explain cardioembolic stroke risk. Methods: We evaluated genetic correlations between a previous genetic study of AF and AF in the presence of cardioembolic stroke using genome-wide genotypes from the Stroke Genetics Network (N = 3,190 AF cases, 3,000 cardioembolic stroke cases, and 28,026 referents). We tested whether a previously validated AF polygenic risk score (PRS) associated with cardioembolic and other stroke subtypes after accounting for AF clinical risk factors. Results: We observed a strong correlation between previously reported genetic risk for AF, AF in the presence of stroke, and cardioembolic stroke (Pearson r = 0.77 and 0.76, respectively, across SNPs with p < 4.4 × 10−4 in the previous AF meta-analysis). An AF PRS, adjusted for clinical AF risk factors, was associated with cardioembolic stroke (odds ratio [OR] per SD = 1.40, p = 1.45 × 10−48), explaining ∼20% of the heritable component of cardioembolic stroke risk. The AF PRS was also associated with stroke of undetermined cause (OR per SD = 1.07, p = 0.004), but no other primary stroke subtypes (all p > 0.1). Conclusions: Genetic risk of AF is associated with cardioembolic stroke, independent of clinical risk factors. Studies are warranted to determine whether AF genetic risk can serve as a biomarker for strokes caused by AF

    A replication study of genetic risk loci for ischemic stroke in a Dutch population: A case-control study

    Get PDF
    We aimed to replicate reported associations of 10 SNPs at eight distinct loci with overall ischemic stroke (IS) and its subtypes in an independent cohort of Dutch IS patients. We included 1,375 IS patients enrolled in a prospective multicenter hospital-based cohort in the Netherlands, and 1,533 population-level controls of Dutch descent. We tested these SNPs for association with overall IS and its subtypes (large artery atherosclerosis, small vessel disease and cardioembolic stroke (CE), as classified by TOAST) using an additive multivariable logistic regression model, adjusting for age and sex. We obtained odds ratios (OR) with 95% confidence intervals (95% CI) for the risk allele of each SNP analyzed and exact p-values by permutation. We confirmed the association at 4q25 (PITX2) (OR 1.43; 95% CI, 1.13-1.81, p = 0.029) and 16q22 (ZFHX3) (OR 1.62; 95% CI, 1.26-2.07, p = 0.001) as risk loci for CE. Locus 16q22 was also associated with overall IS (OR 1.24; 95% CI, 1.08-1.42, p = 0.016). Other loci previously associated with IS and/or its subtypes were not confirmed. In conclusion, we validated two loci (4q25, 16q22) associated with CE. In addition, our study may suggest that the association of locus 16q22 may not be limited to CE, but also includes overall IS

    Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization.

    Get PDF
    The QT interval, an electrocardiographic measure reflecting myocardial repolarization, is a heritable trait. QT prolongation is a risk factor for ventricular arrhythmias and sudden cardiac death (SCD) and could indicate the presence of the potentially lethal mendelian long-QT syndrome (LQTS). Using a genome-wide association and replication study in up to 100,000 individuals, we identified 35 common variant loci associated with QT interval that collectively explain ∼8-10% of QT-interval variation and highlight the importance of calcium regulation in myocardial repolarization. Rare variant analysis of 6 new QT interval-associated loci in 298 unrelated probands with LQTS identified coding variants not found in controls but of uncertain causality and therefore requiring validation. Several newly identified loci encode proteins that physically interact with other recognized repolarization proteins. Our integration of common variant association, expression and orthogonal protein-protein interaction screens provides new insights into cardiac electrophysiology and identifies new candidate genes for ventricular arrhythmias, LQTS and SCD

    COL4A2 is associated with lacunar ischemic stroke and deep ICH: Meta-analyses among 21,500 cases and 40,600 controls

    Get PDF
    Objective: To determine whether common variants in familial cerebral small vessel disease (SVD) genes confer risk of sporadic cerebral SVD. Methods: We meta-analyzed genotype data from individuals of European ancestry to determine associations of common single nucleotide polymorphisms (SNPs) in 6 familial cerebral SVD genes (COL4A1, COL4A2, NOTCH3, HTRA1, TREX1, and CECR1) with intracerebral hemorrhage (ICH) (deep, lobar, all; 1,878 cases, 2,830 controls) and ischemic stroke (IS) (lacunar, cardioembolic, large vessel disease, all; 19,569 cases, 37,853 controls). We applied data quality filters and set statistical significance thresholds accounting for linkage disequilibrium and multiple testing. Results: A locus in COL4A2 was associated (significance threshold p , 3.5 3 1024) with both lacunar IS (lead SNP rs9515201: odds ratio [OR] 1.17, 95%confidence interval [CI] 1.11-1.24, p 56.62 31028) and deep ICH (lead SNP rs4771674: OR 1.28, 95%CI 1.13-1.44, p 55.76 3 1025). A SNP in HTRA1 was associated (significance threshold p , 5.5 3 1024) with lacunar IS (rs79043147: OR 1.23, 95%CI 1.10-1.37, p 5 1.90 3 1024) and less robustly with deep ICH. There was no clear evidence for association of common variants in either COL4A2 or HTRA1 with non-SVD strokes or in any of the other genes with any stroke phenotype

    RSPO3 impacts body fat distribution and regulates adipose cell biology in vitro

    Get PDF
    Fat distribution is an independent cardiometabolic risk factor. However, its molecular and cellular underpinnings remain obscure. Here we demonstrate that two independent GWAS signals at RSPO3, which are associated with increased body mass index-adjusted waist-to-hip ratio, act to specifically increase RSPO3 expression in subcutaneous adipocytes. These variants are also associated with reduced lower-body fat, enlarged gluteal adipocytes and insulin resistance. Based on human cellular studies RSPO3 may limit gluteofemoral adipose tissue (AT) expansion by suppressing adipogenesis and increasing gluteal adipocyte susceptibility to apoptosis. RSPO3 may also promote upper-body fat distribution by stimulating abdominal adipose progenitor (AP) proliferation. The distinct biological responses elicited by RSPO3 in abdominal versus gluteal APs in vitro are associated with differential changes in WNT signalling. Zebrafish carrying a nonsense rspo3 mutation display altered fat distribution. Our study identifies RSPO3 as an important determinant of peripheral AT storage capacity

    Major histocompatibility complex associations of ankylosing spondylitis are complex and involve further epistasis with ERAP1

    Get PDF
    Ankylosing spondylitis (AS) is a common, highly heritable, inflammatory arthritis for which HLA-B*27 is the major genetic risk factor, although its role in the aetiology of AS remains elusive. To better understand the genetic basis of the MHC susceptibility loci, we genotyped 7,264 MHC SNPs in 22,647 AS cases and controls of European descent. We impute SNPs, classical HLA alleles and amino-acid residues within HLA proteins, and tested these for association to AS status. Here we show that in addition to effects due to HLA-B*27 alleles, several other HLA-B alleles also affect susceptibility. After controlling for the associated haplotypes in HLA-B, we observe independent associations with variants in the HLA-A, HLA-DPB1 and HLA-DRB1 loci. We also demonstrate that the ERAP1 SNP rs30187 association is not restricted only to carriers of HLA-B*27 but also found in HLA-B*40:01 carriers independently of HLA-B*27 genotype

    Targeted Genetic Screen in Amyotrophic Lateral Sclerosis Reveals Novel Genetic Variants with Synergistic Effect on Clinical Phenotype

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is underpinned by an oligogenic rare variant architecture. Identified genetic variants of ALS include RNA-binding proteins containing prion-like domains (PrLDs). We hypothesized that screening genes encoding additional similar proteins will yield novel genetic causes of ALS. The most common genetic variant of ALS patients is a G4C2-repeat expansion within C9ORF72. We have shown that G4C2-repeat RNA sequesters RNA-binding proteins. A logical consequence of this is that loss-of-function mutations in G4C2-binding partners might contribute to ALS pathogenesis independently of and/or synergistically with C9ORF72 expansions. Targeted sequencing of genomic DNA encoding either RNA-binding proteins or known ALS genes (n = 274 genes) was performed in ALS patients to identify rare deleterious genetic variants and explore genotype-phenotype relationships. Genomic DNA was extracted from 103 ALS patients including 42 familial ALS patients and 61 young-onset (average age of onset 41 years) sporadic ALS patients; patients were chosen to maximize the probability of identifying genetic causes of ALS. Thirteen patients carried a G4C2-repeat expansion of C9ORF72. We identified 42 patients with rare deleterious variants; 6 patients carried more than one variant. Twelve mutations were discovered in known ALS genes which served as a validation of our strategy. Rare deleterious variants in RNA-binding proteins were significantly enriched in ALS patients compared to control frequencies (p = 5.31E-18). Nineteen patients featured at least one variant in a RNA-binding protein containing a PrLD. The number of variants per patient correlated with rate of disease progression (t-test, p = 0.033). We identified eighteen patients with a single variant in a G4C2-repeat binding protein. Patients with a G4C2-binding protein variant in combination with a C9ORF72 expansion had a significantly faster disease course (t-test, p = 0.025). Our data are consistent with an oligogenic model of ALS. We provide evidence for a number of entirely novel genetic variants of ALS caused by mutations in RNA-binding proteins. Moreover we show that these mutations act synergistically with each other and with C9ORF72 expansions to modify the clinical phenotype of ALS. A key finding is that this synergy is present only between functionally interacting variants. This work has significant implications for ALS therapy development
    corecore