134 research outputs found

    A novel substitution matrix fitted to the compositional bias in Mollicutes improves the prediction of homologous relationships

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Substitution matrices are key parameters for the alignment of two protein sequences, and consequently for most comparative genomics studies. The composition of biological sequences can vary importantly between species and groups of species, and classical matrices such as those in the BLOSUM series fail to accurately estimate alignment scores and statistical significance with sequences sharing marked compositional biases.</p> <p>Results</p> <p>We present a general and simple methodology to build matrices that are especially fitted to the compositional bias of proteins. Our approach is inspired from the one used to build the BLOSUM matrices and is based on learning substitution and amino acid frequencies on real sequences with the corresponding compositional bias. We applied it to the large scale comparison of Mollicute AT-rich genomes. The new matrix, MOLLI60, was used to predict pairwise orthology relationships, as well as homolog families among 24 Mollicute genomes. We show that this new matrix enables to better discriminate between true and false orthologs and improves the clustering of homologous proteins, with respect to the use of the classical matrix BLOSUM62.</p> <p>Conclusions</p> <p>We show in this paper that well-fitted matrices can improve the predictions of orthologous and homologous relationships among proteins with a similar compositional bias. With the ever-increasing number of sequenced genomes, our approach could prove valuable in numerous comparative studies focusing on atypical genomes.</p

    Specific Evolution of F1-Like ATPases in Mycoplasmas

    Get PDF
    F1F0 ATPases have been identified in most bacteria, including mycoplasmas which have very small genomes associated with a host-dependent lifestyle. In addition to the typical operon of eight genes encoding genuine F1F0 ATPase (Type 1), we identified related clusters of seven genes in many mycoplasma species. Four of the encoded proteins have predicted structures similar to the α, β, γ and ε subunits of F1 ATPases and could form an F1-like ATPase. The other three proteins display no similarity to any other known proteins. Two of these proteins are probably located in the membrane, as they have three and twelve predicted transmembrane helices. Phylogenomic studies identified two types of F1-like ATPase clusters, Type 2 and Type 3, characterized by a rapid evolution of sequences with the conservation of structural features. Clusters encoding Type 2 and Type 3 ATPases were assumed to originate from the Hominis group of mycoplasmas. We suggest that Type 3 ATPase clusters may spread to other phylogenetic groups by horizontal gene transfer between mycoplasmas in the same host, based on phylogeny and genomic context. Functional analyses in the ruminant pathogen Mycoplasma mycoides subsp. mycoides showed that the Type 3 cluster genes were organized into an operon. Proteomic analyses demonstrated that the seven encoded proteins were produced during growth in axenic media. Mutagenesis and complementation studies demonstrated an association of the Type 3 cluster with a major ATPase activity of membrane fractions. Thus, despite their tendency toward genome reduction, mycoplasmas have evolved and exchanged specific F1-like ATPases with no known equivalent in other bacteria. We propose a model, in which the F1-like structure is associated with a hypothetical X0 sector located in the membrane of mycoplasma cells

    Genome-Scale Analysis of Mycoplasma agalactiae Loci Involved in Interaction with Host Cells

    Get PDF
    Mycoplasma agalactiae is an important pathogen of small ruminants, in which it causes contagious agalactia. It belongs to a large group of “minimal bacteria” with a small genome and reduced metabolic capacities that are dependent on their host for nutrients. Mycoplasma survival thus relies on intimate contact with host cells, but little is known about the factors involved in these interactions or in the more general infectious process. To address this issue, an assay based on goat epithelial and fibroblastic cells was used to screen a M. agalactiae knockout mutant library. Mutants with reduced growth capacities in cell culture were selected and 62 genomic loci were identified as contributing to this phenotype. As expected for minimal bacteria, “transport and metabolism” was the functional category most commonly implicated in this phenotype, but 50% of the selected mutants were disrupted in coding sequences (CDSs) with unknown functions, with surface lipoproteins being most commonly represented in this category. Since mycoplasmas lack a cell wall, lipoproteins are likely to be important in interactions with the host. A few intergenic regions were also identified that may act as regulatory sequences under co-culture conditions. Interestingly, some mutants mapped to gene clusters that are highly conserved across mycoplasma species but located in different positions. One of these clusters was found in a transcriptionally active region of the M. agalactiae chromosome, downstream of a cryptic promoter. A possible scenario for the evolution of these loci is discussed. Finally, several CDSs identified here are conserved in other important pathogenic mycoplasmas, and some were involved in horizontal gene transfer with phylogenetically distant species. These results provide a basis for further deciphering functions mediating mycoplasma-host interactions

    Life on Arginine for Mycoplasma hominis: Clues from Its Minimal Genome and Comparison with Other Human Urogenital Mycoplasmas

    Get PDF
    Mycoplasma hominis is an opportunistic human mycoplasma. Two other pathogenic human species, M. genitalium and Ureaplasma parvum, reside within the same natural niche as M. hominis: the urogenital tract. These three species have overlapping, but distinct, pathogenic roles. They have minimal genomes and, thus, reduced metabolic capabilities characterized by distinct energy-generating pathways. Analysis of the M. hominis PG21 genome sequence revealed that it is the second smallest genome among self-replicating free living organisms (665,445 bp, 537 coding sequences (CDSs)). Five clusters of genes were predicted to have undergone horizontal gene transfer (HGT) between M. hominis and the phylogenetically distant U. parvum species. We reconstructed M. hominis metabolic pathways from the predicted genes, with particular emphasis on energy-generating pathways. The Embden–Meyerhoff–Parnas pathway was incomplete, with a single enzyme absent. We identified the three proteins constituting the arginine dihydrolase pathway. This pathway was found essential to promote growth in vivo. The predicted presence of dimethylarginine dimethylaminohydrolase suggested that arginine catabolism is more complex than initially described. This enzyme may have been acquired by HGT from non-mollicute bacteria. Comparison of the three minimal mollicute genomes showed that 247 CDSs were common to all three genomes, whereas 220 CDSs were specific to M. hominis, 172 CDSs were specific to M. genitalium, and 280 CDSs were specific to U. parvum. Within these species-specific genes, two major sets of genes could be identified: one including genes involved in various energy-generating pathways, depending on the energy source used (glucose, urea, or arginine) and another involved in cytadherence and virulence. Therefore, a minimal mycoplasma cell, not including cytadherence and virulence-related genes, could be envisaged containing a core genome (247 genes), plus a set of genes required for providing energy. For M. hominis, this set would include 247+9 genes, resulting in a theoretical minimal genome of 256 genes

    Origination of the Split Structure of Spliceosomal Genes from Random Genetic Sequences

    Get PDF
    The mechanism by which protein-coding portions of eukaryotic genes came to be separated by long non-coding stretches of DNA, and the purpose for this perplexing arrangement, have remained unresolved fundamental biological problems for three decades. We report here a plausible solution to this problem based on analysis of open reading frame (ORF) length constraints in the genomes of nine diverse species. If primordial nucleic acid sequences were random in sequence, functional proteins that are innately long would not be encoded due to the frequent occurrence of stop codons. The best possible way that a long protein-coding sequence could have been derived was by evolving a split-structure from the random DNA (or RNA) sequence. Results of the systematic analyses of nine complete genome sequences presented here suggests that perhaps the major underlying structural features of split-genes have evolved due to the indigenous occurrence of split protein-coding genes in primordial random nucleotide sequence. The results also suggest that intron-rich genes containing short exons may have been the original form of genes intrinsically occurring in random DNA, and that intron-poor genes containing long exons were perhaps derived from the original intron-rich genes

    Autologous stem cell transplantation for progressive systemic sclerosis: a prospective non-interventional study from the European Society for Blood and Marrow Transplantation Autoimmune Disease Working Party

    Get PDF
    Three randomized controlled trials in early severe systemic sclerosis demonstrated that autologous hematopoietic stem cell transplantation was superior to standard cyclophosphamide therapy. This European Society for Blood and Marrow Transplantation multicenter, prospective, non-interventional study was designed to further decipher efficacy and safety of this procedure for severe systemic sclerosis patients in real-life practice and to search for prognostic factors. All consecutive adult patients with systemic sclerosis undergoing a first autologous hematopoietic stem cell transplant between December 2012 and February 2016 were prospectively included in the study. The primary endpoint was progression-free survival. Secondary endpoints were overall survival, non-relapse mortality, response and incidence of progression. Eighty patients with systemic sclerosis were included. The median duration of the follow-up was 24 (range, 6-57) months after stem cell transplantation using cyclophosphamide plus antithymocyte globulin conditioning for all, with CD34(+) selection in 35 patients. At 2 years, the progression-free survival rate was 81.8%, the overall survival rate was 90%, the response rate was 88.7% and the incidence of progression was 11.9%. The 100-day non-relapse mortality rate was 6.25% (n=5) with four deaths from cardiac events, including three due to cyclophosphamide toxicity. Modified Rodnan skin score and forced vital capacity improved with time (P24 and older age at transplantation were associated with lower progression-free survival (hazard ratios 3.32 and 1.77, respectively). CD34(+)-cell selection was associated with better response (hazard ratio 0.46). This study confirms the efficacy of autologous stem cell transplantation, using non-myeloablative conditioning, in real-life practice for severe systemic sclerosis. Careful cardio-pulmonary assessment to identify organ involvement at the time of the patient's referral, reduced cyclophosphamide doses and CD34(+)-cell selection may improve outcomes.Immunobiology of allogeneic stem cell transplantation and immunotherapy of hematological disease

    Carrier thermalization dynamics in single zincblende and wurtzite InP nanowires

    Get PDF
    Using transient Rayleigh scattering (TRS) measurements, we obtain photoexcited carrier thermalization dynamics for both zincblende (ZB) and wurtzite (WZ) InP single nanowires (NW) with picosecond resolution. A phenomenological fitting model based on direct band-to-band transition theory is developed to extract the electron-hole–plasma density and temperature as a function of time from TRS measurements of single nanowires, which have complex valence band structures. We find that the thermalization dynamics of hot carriers depends strongly on material (GaAs NW vs InP NW) and less strongly on crystal structure (ZB vs WZ). The thermalization dynamics of ZB and WZ InP NWs are similar. But a comparison of the thermalization dynamics in ZB and WZ InP NWs with ZB GaAs NWs reveals more than an order of magnitude slower relaxation for the InP NWs. We interpret these results as reflecting their distinctive phonon band structures that lead to different hot phonon effects. Knowledge of hot carrier thermalization dynamics is an essential component for effective incorporation of nanowire materials into electronic devices
    corecore