645 research outputs found
Estimating Previous Quantization Factors on Multiple JPEG Compressed Images
The JPEG compression algorithm has proven to be efficient in saving storage and preserving image quality thus becoming extremely popular. On the other hand, the overall process leaves traces into encoded signals which are typically exploited for forensic purposes: for instance, the compression parameters of the acquisition device (or editing software) could be inferred. To this aim, in this paper a novel technique to estimate “previous” JPEG quantization factors on images compressed multiple times, in the aligned case by analyzing statistical traces hidden on Discrete Cosine Transform (DCT) histograms is exploited. Experimental results on double, triple and quadruple compressed images, demonstrate the effectiveness of the proposed technique while unveiling further interesting insights
First Quantization Estimation by a Robust Data Exploitation Strategy of DCT Coefficients
It is well known that the JPEG compression pipeline leaves residual traces in the compressed images that are useful for forensic investigations. Through the analysis of such insights the history of a digital image can be reconstructed by means of First Quantization Estimations (FQE), often employed for the camera model identification (CMI) task. In this paper, a novel FQE technique for JPEG double compressed images is proposed which employs a mixed approach based on Machine Learning and statistical analysis. The proposed method was designed to work in the aligned case (i.e., JPEG grid is not misaligned among the various compressions) and demonstrated to be able to work effectively in different challenging scenarios (small input patches, custom quantization tables) without strong a-priori assumptions, surpassing state-of-the-art solutions. Finally, an in-depth analysis on the impact of image input sizes, dataset image resolutions, custom quantization tables and different Discrete Cosine Transform (DCT) implementations was carried out
CNN-based first quantization estimation of double compressed JPEG images
Multiple JPEG compressions leave artifacts in digital images: residual traces that could be exploited in forensics investigations to recover information about the device employed for acquisition or image editing software. In this paper, a novel First Quantization Estimation (FQE) algorithm based on convolutional neural networks (CNNs) is proposed. In particular, a solution based on an ensemble of CNNs was developed in conjunction with specific regularization strategies exploiting assumptions about neighboring element values of the quantization matrix to be inferred. Mostly designed to work in the aligned case, the solution was tested in challenging scenarios involving different input patch sizes, quantization matrices (both standard and custom) and datasets (i.e., RAISE and UCID collections). Comparisons with state-of-the-art solutions confirmed the effectiveness of the presented solution demonstrating for the first time to cover the widest combinations of parameters of double JPEG compressions
Kinematics and strain analyses of the eastern segment of the Pernicana Fault (Mt. Etna, Italy) derived from geodetic techniques (1997-2005)
This paper analyses the ground deformations occurring on the eastern part of the Pernicana Fault from 1997 to 2005. This segment of the fault was monitored with three local networks based on GPS and EDM techniques. More than seventy GPS and EDM surveys were carried out during the considered period, in order to achieve a higher temporal detail of ground deformation affecting the structure. We report the comparisons among GPS and EDM surveys in terms of absolute horizontal displacements of each GPS benchmark and in terms of strain parameters for each GPS and EDM network. Ground deformation measurements detected a continuous left-lateral movement of the Pernicana Fault. We conclude that, on the easternmost part of the Pernicana Fault, where it branches out into two segments, the deformation is transferred entirely SE-wards by a splay fault
Global positioning system survey data for active seismic and volcanic areas of eastern Sicily, 1994 to 2013
This work presents and describes a 20-year long database of GPS data collected by geodetic surveys over the seismically and volcanically active eastern Sicily, for a total of more than 6300 measurements. Raw data were initially collected from the various archives at the Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Catania-Osservatorio Etneo and organized in a single repository. Here, quality and completeness checks were performed, while all necessary supplementary information were searched, collected, validated and organized together with the relevant data. Once all data and information collections were completed, raw binary data were converted into the universal ASCII RINEX format; all data are provided in this format with the necessary information for precise processing. In order to make the data archive readily consultable, we developed software allowing the user to easily search and obtain the needed data by simple alphanumeric and geographic queries.The work of S. Fagone and C. Giardina was supported by the
Servizio Civile Nazionale ‘Terra in movimento: monitoraggio geodetico delle aree a rischio vulcanico e
sismico della Sicilia’ 2012/2013 Project.PublishedID 1600621IT. Reti di monitoraggio e OsservazioniJCR Journalope
Exoplanet science with the LBTI: instrument status and plans
The Large Binocular Telescope Interferometer (LBTI) is a strategic instrument
of the LBT designed for high-sensitivity, high-contrast, and high-resolution
infrared (1.5-13 m) imaging of nearby planetary systems. To carry out a
wide range of high-spatial resolution observations, it can combine the two
AO-corrected 8.4-m apertures of the LBT in various ways including direct
(non-interferometric) imaging, coronagraphy (APP and AGPM), Fizeau imaging,
non-redundant aperture masking, and nulling interferometry. It also has
broadband, narrowband, and spectrally dispersed capabilities. In this paper, we
review the performance of these modes in terms of exoplanet science
capabilities and describe recent instrumental milestones such as first-light
Fizeau images (with the angular resolution of an equivalent 22.8-m telescope)
and deep interferometric nulling observations.Comment: 12 pages, 6 figures, Proc. SPI
The FMOS-COSMOS survey of star-forming galaxies at z~1.6. IV: Excitation state and chemical enrichment of the interstellar medium
We investigate the physical conditions of ionized gas in high-z star-forming
galaxies using diagnostic diagrams based on the rest-frame optical emission
lines. The sample consists of 701 galaxies with an Ha detection at , from the FMOS-COSMOS survey, that represent the normal
star-forming population over the stellar mass range with those at being
well sampled. We confirm an offset of the average location of star-forming
galaxies in the BPT diagram ([OIII]/Hb vs. [NII]/Ha), primarily towards higher
[OIII]/Hb, compared with local galaxies. Based on the [SII] ratio, we measure
an electron density (), that is higher
than that of local galaxies. Based on comparisons to theoretical models, we
argue that changes in emission-line ratios, including the offset in the BPT
diagram, are caused by a higher ionization parameter both at fixed stellar mass
and at fixed metallicity with additional contributions from a higher gas
density and possibly a hardening of the ionizing radiation field. Ionization
due to AGNs is ruled out as assessed with Chandra. As a consequence, we revisit
the mass-metallicity relation using [NII]/Ha and a new calibration including
[NII]/[SII] as recently introduced by Dopita et al. Consistent with our
previous results, the most massive galaxies ()
are fully enriched, while those at lower masses have metallicities lower than
local galaxies. Finally, we demonstrate that the stellar masses, metallicities
and star formation rates of the FMOS sample are well fit with a
physically-motivated model for the chemical evolution of star-forming galaxies.Comment: 38 pages; Accepted for publication in Ap
Clustering and Non-Gaussian Behavior in Granular Matter
We investigate the properties of a model of granular matter consisting of
Brownian particles on a line subject to inelastic mutual collisions. This model
displays a genuine thermodynamic limit for the mean values of the energy and
the energy dissipation. When the typical relaxation time associated with
the Brownian process is small compared with the mean collision time
the spatial density is nearly homogeneous and the velocity probability
distribution is gaussian. In the opposite limit one has
strong spatial clustering, with a fractal distribution of particles, and the
velocity probability distribution strongly deviates from the gaussian one.Comment: 4 pages including 3 eps figures, LaTex, added references, corrected
typos, minimally changed contents and abstract, to published in
Phys.Rev.Lett. (tentatively on 28th of October, 1998
- …