15 research outputs found

    Mortality from gastrointestinal congenital anomalies at 264 hospitals in 74 low-income, middle-income, and high-income countries: a multicentre, international, prospective cohort study

    Get PDF
    Background: Congenital anomalies are the fifth leading cause of mortality in children younger than 5 years globally. Many gastrointestinal congenital anomalies are fatal without timely access to neonatal surgical care, but few studies have been done on these conditions in low-income and middle-income countries (LMICs). We compared outcomes of the seven most common gastrointestinal congenital anomalies in low-income, middle-income, and high-income countries globally, and identified factors associated with mortality. // Methods: We did a multicentre, international prospective cohort study of patients younger than 16 years, presenting to hospital for the first time with oesophageal atresia, congenital diaphragmatic hernia, intestinal atresia, gastroschisis, exomphalos, anorectal malformation, and Hirschsprung's disease. Recruitment was of consecutive patients for a minimum of 1 month between October, 2018, and April, 2019. We collected data on patient demographics, clinical status, interventions, and outcomes using the REDCap platform. Patients were followed up for 30 days after primary intervention, or 30 days after admission if they did not receive an intervention. The primary outcome was all-cause, in-hospital mortality for all conditions combined and each condition individually, stratified by country income status. We did a complete case analysis. // Findings: We included 3849 patients with 3975 study conditions (560 with oesophageal atresia, 448 with congenital diaphragmatic hernia, 681 with intestinal atresia, 453 with gastroschisis, 325 with exomphalos, 991 with anorectal malformation, and 517 with Hirschsprung's disease) from 264 hospitals (89 in high-income countries, 166 in middle-income countries, and nine in low-income countries) in 74 countries. Of the 3849 patients, 2231 (58·0%) were male. Median gestational age at birth was 38 weeks (IQR 36–39) and median bodyweight at presentation was 2·8 kg (2·3–3·3). Mortality among all patients was 37 (39·8%) of 93 in low-income countries, 583 (20·4%) of 2860 in middle-income countries, and 50 (5·6%) of 896 in high-income countries (p<0·0001 between all country income groups). Gastroschisis had the greatest difference in mortality between country income strata (nine [90·0%] of ten in low-income countries, 97 [31·9%] of 304 in middle-income countries, and two [1·4%] of 139 in high-income countries; p≤0·0001 between all country income groups). Factors significantly associated with higher mortality for all patients combined included country income status (low-income vs high-income countries, risk ratio 2·78 [95% CI 1·88–4·11], p<0·0001; middle-income vs high-income countries, 2·11 [1·59–2·79], p<0·0001), sepsis at presentation (1·20 [1·04–1·40], p=0·016), higher American Society of Anesthesiologists (ASA) score at primary intervention (ASA 4–5 vs ASA 1–2, 1·82 [1·40–2·35], p<0·0001; ASA 3 vs ASA 1–2, 1·58, [1·30–1·92], p<0·0001]), surgical safety checklist not used (1·39 [1·02–1·90], p=0·035), and ventilation or parenteral nutrition unavailable when needed (ventilation 1·96, [1·41–2·71], p=0·0001; parenteral nutrition 1·35, [1·05–1·74], p=0·018). Administration of parenteral nutrition (0·61, [0·47–0·79], p=0·0002) and use of a peripherally inserted central catheter (0·65 [0·50–0·86], p=0·0024) or percutaneous central line (0·69 [0·48–1·00], p=0·049) were associated with lower mortality. // Interpretation: Unacceptable differences in mortality exist for gastrointestinal congenital anomalies between low-income, middle-income, and high-income countries. Improving access to quality neonatal surgical care in LMICs will be vital to achieve Sustainable Development Goal 3.2 of ending preventable deaths in neonates and children younger than 5 years by 2030

    Evolution of the CERNBox platform to support the Malt project

    No full text
    CERNBox is the CERN cloud storage hub for more than 25,000 users at CERN. It allows synchronising and sharing files on all major desktop and mobile platforms (Linux, Windows, MacOSX, Android, iOS) providing universal, ubiquitous, online- and offline access to any data stored in the CERN EOS infrastructure. CERNBox also provides integration with other CERN services for big science: visualisation tools, interactive data analysis and real-time collaborative editing. Over the last two years, CERNBox has evolved from a pure cloud sync and share platform into a collaborative service, to support new applications such as DrawIO for diagrams and organigrams sketching, OnlyOffice and Collabora Online for documents editing, and DXHTML Gantt for project management, as alternatives to traditional desktop applications. Moving to open source applications has the advantage to reduce licensing costs and enables easier integration within the CERN infrastructure. This move from commercial software to open source solutions is part of the MALT project, led by the IT department at CERN to reduce the dependencies on commercial solutions. As part of the MALT project, CERNBox is the chosen solution to replace Home directories of the Windows DFS file system. Access to storage from Windows managed devices for end-users is largely covered by synchronization clients. However, online access using standard CIFS/SMB protocol is required for shared use-cases, such as central login services (Terminal Services) and visitor desktop computers. We present recent work to introduce a set of Samba gateways running in High Availability cluster mode to enable direct access to the CERNBox backend storage (EOS)

    Evolution of the CERNBox platform to support the Malt project

    Get PDF
    CERNBox is the CERN cloud storage hub for more than 25,000 users at CERN. It allows synchronising and sharing files on all major desktop and mobile platforms (Linux, Windows, MacOSX, Android, iOS) providing universal, ubiquitous, online- and offline access to any data stored in the CERN EOS infrastructure. CERNBox also provides integration with other CERN services for big science: visualisation tools, interactive data analysis and real-time collaborative editing. Over the last two years, CERNBox has evolved from a pure cloud sync and share platform into a collaborative service, to support new applications such as DrawIO for diagrams and organigrams sketching, OnlyOffice and Collabora Online for documents editing, and DXHTML Gantt for project management, as alternatives to traditional desktop applications. Moving to open source applications has the advantage to reduce licensing costs and enables easier integration within the CERN infrastructure. This move from commercial software to open source solutions is part of the MALT project, led by the IT department at CERN to reduce the dependencies on commercial solutions. As part of the MALT project, CERNBox is the chosen solution to replace Home directories of the Windows DFS file system. Access to storage from Windows managed devices for end-users is largely covered by synchronization clients. However, online access using standard CIFS/SMB protocol is required for shared use-cases, such as central login services (Terminal Services) and visitor desktop computers. We present recent work to introduce a set of Samba gateways running in High Availability cluster mode to enable direct access to the CERNBox backend storage (EOS)

    Mechanisms of Immune Evasion in Leishmaniasis

    No full text

    Malaria parasites: The great escape

    Get PDF
    10.3389/fimmu.2016.00463Frontiers in Immunology7NOV46

    Malaria Parasites: The Great Escape

    No full text
    corecore