16 research outputs found
Applicability of layered sine-Gordon models to layered superconductors: II. The case of magnetic coupling
In this paper, we propose a quantum field theoretical renormalization group
approach to the vortex dynamics of magnetically coupled layered
superconductors, to supplement our earlier investigations on the
Josephson-coupled case. We construct a two-dimensional multi-layer sine-Gordon
type model which we map onto a gas of topological excitations. With a special
choice of the mass matrix for our field theoretical model, vortex dominated
properties of magnetically coupled layered superconductors can be described.
The well known interaction potentials of fractional flux vortices are
consistently obtained from our field-theoretical analysis, and the physical
parameters (vortex fugacity and temperature parameter) are also identified. We
analyse the phase structure of the multi-layer sine--Gordon model by a
differential renormalization group method for the magnetically coupled case
from first principles. The dependence of the transition temperature on the
number of layers is found to be in agreement with known results based on other
methods.Comment: 7 pages, 1 figure, published in J. Phys.: Condens. Matte
Impact of Co atoms on the electronic structure of Bi2Te3 and MnBi2Te4 topological insulators
This work is devoted to an experimental investigation of the electronic structure of the surface of topological insulators of various stoichiometry during the adsorption of Co atoms. Changes in the surface electronic structure of Bi2Te3 and MnBi2Te4 systems upon deposition of Co atoms at various temperatures have been studied using the methods of angle-resolved photoemission spectroscopy, as well as X-ray photoelectron spectroscopy. It is suggested that binding of the adsorbed Co atoms to the substrate surface modifies Dirac point position. The observed changes are associated with the possible formation of magnetic Co-containing ordered surface alloys.This work was supported by the St. Petersburg State University, grant no. 73028629, the Russian Science Foundation, grant no. 18-12-00062, the Russian Foundation for Basic Research, grant nos. 20-32-70127, 21-52-12024, and 18-29-12094, the Science Development Foundation of the President of Azerbaijan, grant no. EIF-BGM-4-RFTF-1/2017-21/04/1-M-02, and in the framework of the state assignment of Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, and the Rzhanov Institute of Semiconductors Physics, Siberian Branch of the Russian Academy of Sciences.Peer reviewe
The Flux-Line Lattice in Superconductors
Magnetic flux can penetrate a type-II superconductor in form of Abrikosov
vortices. These tend to arrange in a triangular flux-line lattice (FLL) which
is more or less perturbed by material inhomogeneities that pin the flux lines,
and in high- supercon- ductors (HTSC's) also by thermal fluctuations. Many
properties of the FLL are well described by the phenomenological
Ginzburg-Landau theory or by the electromagnetic London theory, which treats
the vortex core as a singularity. In Nb alloys and HTSC's the FLL is very soft
mainly because of the large magnetic penetration depth: The shear modulus of
the FLL is thus small and the tilt modulus is dispersive and becomes very small
for short distortion wavelength. This softness of the FLL is enhanced further
by the pronounced anisotropy and layered structure of HTSC's, which strongly
increases the penetration depth for currents along the c-axis of these uniaxial
crystals and may even cause a decoupling of two-dimensional vortex lattices in
the Cu-O layers. Thermal fluctuations and softening may melt the FLL and cause
thermally activated depinning of the flux lines or of the 2D pancake vortices
in the layers. Various phase transitions are predicted for the FLL in layered
HTSC's. The linear and nonlinear magnetic response of HTSC's gives rise to
interesting effects which strongly depend on the geometry of the experiment.Comment: Review paper for Rep.Prog.Phys., 124 narrow pages. The 30 figures do
not exist as postscript file