65 research outputs found

    Activation of adherent vascular neutrophils in the lung during acute endotoxemia

    Get PDF
    BACKGROUND: Neutrophils constitute the first line of defense against invading microorganisms. Whereas these cells readily undergo apoptosis under homeostatic conditions, their survival is prolonged during inflammatory reactions and they become biochemically and functionally activated. In the present study, we analyzed the effects of acute endotoxemia on the response of a unique subpopulation of neutrophils tightly adhered to the lung vasculature. METHODS: Rats were treated with 5 mg/kg lipopolysaccharide (i.v.) to induce acute endotoxemia. Adherent neutrophils were isolated from the lung vasculature by collagenase digestion and sequential filtering. Agarose gel electrophoresis, RT-PCR, western blotting and electrophoretic mobility shift assays were used to evaluate neutrophil activity. RESULTS: Adherent vascular neutrophils isolated from endotoxemic animals exhibited decreased apoptosis when compared to cells from control animals. This was associated with a marked increase in expression of the anti-apoptotic protein, Mcl-1. Cells isolated 0.5–2 hours after endotoxin administration were more chemotactic than cells from control animals and expressed increased tumor necrosis factor-alpha and cyclooxygenase-2 mRNA and protein, demonstrating that they are functionally activated. Endotoxin treatment of the animals also induced p38 and p44/42 mitogen activated protein kinases in the adherent lung neutrophils, as well as nuclear binding activity of the transcription factors, NF-κB and cAMP response element binding protein. CONCLUSION: These data demonstrate that adherent vascular lung neutrophils are highly responsive to endotoxin and that pathways regulating apoptosis and cellular activation are upregulated in these cells

    Effects of controlled diesel exhaust exposure on apoptosis and proliferation markers in bronchial epithelium – an in vivo bronchoscopy study on asthmatics, rhinitics and healthy subjects

    No full text
    BackgroundEpidemiological evidence demonstrates that exposure to traffic-derived pollution worsens respiratory symptoms in asthmatics, but controlled human exposure studies have failed to provide a mechanism for this effect. Here we investigated whether diesel exhaust (DE) would induce apoptosis or proliferation in the bronchial epithelium in vivo and thus contribute to respiratory symptoms.MethodsModerate (n?=?16) and mild (n?=?16) asthmatics, atopic non-asthmatic controls (rhinitics) (n?=?13) and healthy controls (n?=?21) were exposed to filtered air or DE (100 ?g/m 3 ) for 2 h, on two separate occasions. Bronchial biopsies were taken 18 h post-exposure and immunohistochemically analysed for pro-apoptotic and anti-apoptotic proteins (Bad, Bak, p85 PARP, Fas, Bcl-2) and a marker of proliferation (Ki67). Positive staining was assessed within the epithelium using computerized image analysis.ResultsNo evidence of epithelial apoptosis or proliferation was observed in healthy, allergic or asthmatic airways following DE challenge.ConclusionIn the present study, we investigated whether DE exposure would affect markers of proliferation and apoptosis in the bronchial epithelium of asthmatics, rhinitics and healthy controls, providing a mechanistic basis for the reported increased airway sensitivity in asthmatics to air pollutants. In this first in vivo exposure investigation, we found no evidence of diesel exhaust-induced effects on these processes in the subject groups investigated

    Activation of Epidermal Growth Factor Receptor Is Required for NTHi-Induced NF-κB-Dependent Inflammation

    Get PDF
    Inflammation is a hallmark of many serious human diseases. Nontypeable Haemophilus influenzae (NTHi) is an important human pathogen causing respiratory tract infections in both adults and children. NTHi infections are characterized by inflammation, which is mainly mediated by nuclear transcription factor-kappa B (NF-κB)-dependent production of proinflammatory mediators. Epidermal growth factor receptor (EGFR) has been shown to play important roles in regulating diverse biological processes, including cell growth, differentiation, apoptosis, adhesion, and migration. Its role in regulating NF-κB activation and inflammation, however, remains largely unknown.In the present study, we demonstrate that EGFR plays a vital role in NTHi-induced NF-κB activation and the subsequent induction of proinflammatory mediators in human middle ear epithelial cells and other cell types. Importantly, we found that AG1478, a specific tyrosine kinase inhibitor of EGFR potently inhibited NTHi-induced inflammatory responses in the middle ears and lungs of mice in vivo. Moreover, we found that MKK3/6-p38 and PI3K/Akt signaling pathways are required for mediating EGFR-dependent NF-κB activation and inflammatory responses by NTHi.Here, we provide direct evidence that EGFR plays a critical role in mediating NTHi-induced NF-κB activation and inflammation in vitro and in vivo. Given that EGFR inhibitors have been approved in clinical use for the treatment of cancers, current studies will not only provide novel insights into the molecular mechanisms underlying the regulation of inflammation, but may also lead to the development of novel therapeutic strategies for the treatment of respiratory inflammatory diseases and other inflammatory diseases

    Persistent activation of interlinked type 2 airway epithelial gene networks in sputum-derived cells from aeroallergen-sensitized symptomatic asthmatics

    Get PDF
    © 2018 The Author(s). Atopic asthma is a persistent disease characterized by intermittent wheeze and progressive loss of lung function. The disease is thought to be driven primarily by chronic aeroallergen-induced type 2-associated inflammation. However, the vast majority of atopics do not develop asthma despite ongoing aeroallergen exposure, suggesting additional mechanisms operate in conjunction with type 2 immunity to drive asthma pathogenesis. We employed RNA-Seq profiling of sputum-derived cells to identify gene networks operative at baseline in house dust mite-sensitized (HDM S ) subjects with/without wheezing history that are characteristic of the ongoing asthmatic state. The expression of type 2 effectors (IL-5, IL-13) was equivalent in both cohorts of subjects. However, in HDM S -wheezers they were associated with upregulation of two coexpression modules comprising multiple type 2- and epithelial-associated genes. The first module was interlinked by the hubs EGFR, ERBB2, CDH1 and IL-13. The second module was associated with CDHR3 and mucociliary clearance genes. Our findings provide new insight into the molecular mechanisms operative at baseline in the airway mucosa in atopic asthmatics undergoing natural aeroallergen exposure, and suggest that susceptibility to asthma amongst these subjects involves complex interactions between type 2- and epithelial-associated gene networks, which are not operative in equivalently sensitized/exposed atopic non-asthmatics

    Elevated H3K18 acetylation in airway epithelial cells of asthmatic subjects

    Get PDF
    Background: Epigenetic adjustments of the chromatin architecture through histone modifications are reactive to the environment and can establish chromatin states which are permissive or repressive to gene expression. Epigenetic regulation of gene expression is cell specific and therefore, it is important to understand its contribution to individual cellular responses in tissues like the airway epithelium which forms the mucosal barrier to the inhaled environment within the lung. The airway epithelium of asthmatics is abnormal with dysregulation of genes such as epidermal growth factor receptor (EGFR), the ΔN isoform of the transcription factor p63 (ΔNp63), and signal transducer and activator of transcription 6 (STAT6), integral to differentiation, proliferation, and inflammation. It is important to establish in diseases like asthma how histone modifications affect tissue responses such as proliferation and differentiation. Objectives: To characterize the global histone acetylation and methylation status in the epithelium of asthmatic compared to healthy subjects and to identify the impact of these variations on genes involved in epithelial functions. Methods: Whole lungs were obtained from healthy and asthmatic subjects (n = 6) from which airway epithelial cells (AECs) were isolated and airway sections were taken for analysis of histone lysine acetylation and methylation by immunohistochemistry. AECs were subjected to chromatin immunoprecipitation (ChIP) using anti-H3K18ac and anti-H3K4me2 antibodies followed by RT-PCR targeting ΔNp63, EGFR, and STAT6. AECs were also treated with TSA and changes in ΔNp63, EGFR, and STAT6 expression were determined. Results: We identified an increase in the acetylation of lysine 18 on histone 3 (H3K18ac) and trimethylation of lysine 9 on histone 3 (H3K9me3) in the airway epithelium of asthmatic compared to healthy subjects. We found increased association of H3K18ac around the transcription start site of ΔNp63, EGFR, and STAT6 in AECs of asthmatics. However, we were unable to modify the expression of these genes with the use of the HDAC inhibitor TSA in healthy subjects. Discussion: The airway epithelium from asthmatic subjects displays increased acetylation of H3K18 and association of this mark around the transcription start site of ΔNp63, EGFR, and STAT6. These findings suggest a complex interaction between histone modifications and gene regulation in asthma
    • …
    corecore