910 research outputs found

    Hard X-ray Emission and the Ionizing Source in LINERs

    Get PDF
    We report X-ray fluxes in the 2--10 keV band from LINERs (low-ionization nuclear emission-line regions) and low-luminosity Seyfert galaxies obtained with the ASCA satellite. Observed X-ray luminosities are in the range between 4e39 and 5e41 ergs/s, which are significantly smaller than that of the ``classical'' low-luminosity Seyfert 1 galaxy NGC 4051. We found that X-ray luminosities in 2--10 keV of LINERs with broad Halpha emission in their optical spectra (LINER 1s) are proportional to their Halpha luminosities. This correlation strongly supports the hypothesis that the dominant ionizing source in LINER 1s is photoionization by hard photons from low-luminosity AGNs. On the other hand, the X-ray luminosities of most LINERs without broad Halpha emission (LINER 2s) in our sample are lower than LINER 1s at a given Halpha luminosity. The observed X-ray luminosities in these objects are insufficient to power their Halpha luminosities, suggesting that their primary ionizing source is other than an AGN, or that an AGN, if present, is obscured even at energies above 2 keV.Comment: 11 pages, 3 figures, To appear in the Astrophyscal Jouna

    NuSTAR Hard X-ray View of Low-luminosity Active Galactic Nuclei: High-energy Cutoff and Truncated Thin Disk

    Full text link
    We report the analysis of simultaneous XMM-Newton+NuSTAR observations of two low-luminosity Active Galactic Nuclei (LLAGN), NGC 3998 and NGC 4579. We do not detect any significant variability in either source over the ~3 day length of the NuSTAR observations. The broad-band 0.5-60 keV spectrum of NGC 3998 is best fit with a cutoff power-law, while the one for NGC 4579 is best fit with a combination of a hot thermal plasma model, a power-law, and a blend of Gaussians to fit an Fe complex observed between 6 and 7 keV. Our main spectral results are the following: (1) neither source shows any reflection hump with a 3σ3\sigma reflection fraction upper-limits R<0.3R<0.3 and R<0.18R<0.18 for NGC 3998 and NGC 4579, respectively; (2) the 6-7 keV line complex in NGC 4579 could either be fit with a narrow Fe K line at 6.4 keV and a moderately broad Fe XXV line, or 3 relatively narrow lines, which includes contribution from Fe XXVI; (3) NGC 4579 flux is 60% brighter than previously detected with XMM-Newton, accompanied by a hardening in the spectrum; (4) we measure a cutoff energy Ecut=107−18+27E_{\rm cut}=107_{-18}^{+27} keV in NGC 3998, which represents the lowest and best constrained high-energy cutoff ever measured for an LLAGN; (5) NGC 3998 spectrum is consistent with a Comptonization model with either a sphere (τ≈3±1\tau\approx3\pm1) or slab (τ≈1.2±0.6\tau\approx1.2\pm0.6) geometry, corresponding to plasma temperatures between 20 and 150 keV. We discuss these results in the context of hard X-ray emission from bright AGN, other LLAGN, and hot accretion flow models.Comment: 14 pages, 11 figures, 4 tables, accepted for publication in Ap

    On the Star Formation-AGN Connection at zeta (is) approximately greater than 0.3

    Get PDF
    Using the spectra of a sample of approximately 28,000 nearby obscured active galaxies from Data Release 7 of the Sloan Digital Sky Survey (SDSS), we probe the connection between active galactic nucleus (AGN) activity and star formation over a range of radial scales in the host galaxy. We use the extinction-corrected luminosity of the [O iii] 5007A line as a proxy of intrinsic AGN power and supermassive black hole (SMBH) accretion rate. The star formation rates (SFRs) are taken from the MPA-JHU value-added catalog and are measured through the 3 inch SDSS aperture. We construct matched samples of galaxies covering a range in redshifts. With increasing redshift, the projected aperture size encompasses increasing amounts of the host galaxy. This allows us to trace the radial distribution of star formation as a function of AGN luminosity. We find that the star formation becomes more centrally concentrated with increasing AGN luminosity and Eddington ratio. This implies that such circumnuclear star formation is associated with AGN activity, and that it increasingly dominates over omnipresent disk star formation at higher AGN luminosities, placing critical constraints on theoretical models that link host galaxy star formation and SMBH fueling. We parameterize this relationship and find that the star formation on radial scales (is) less than 1.7 kpc, when including a constant disk component, has a sub-linear dependence on SMBH accretion rate: SFR in proportion to solar mass(sup 0.36), suggesting that angular momentum transfer through the disk limits accretion efficiency rather than the supply from stellar mass loss

    A First Estimate Of The X-Ray Binary Frequency As A Function Of Star Cluster Mass In A Single Galactic System

    Full text link
    We use the previously-identified 15 infrared star-cluster counterparts to X-ray point sources in the interacting galaxies NGC 4038/4039 (the Antennae) to study the relationship between total cluster mass and X-ray binary number. This significant population of X-Ray/IR associations allows us to perform, for the first time, a statistical study of X-ray point sources and their environments. We define a quantity, \eta, relating the fraction of X-ray sources per unit mass as a function of cluster mass in the Antennae. We compute cluster mass by fitting spectral evolutionary models to K_s luminosity. Considering that this method depends on cluster age, we use four different age distributions to explore the effects of cluster age on the value of \eta and find it varies by less than a factor of four. We find a mean value of \eta for these different distributions of \eta = 1.7 x 10^-8 M_\sun^-1 with \sigma_\eta = 1.2 x 10^-8 M_\sun^-1. Performing a \chi^2 test, we demonstrate \eta could exhibit a positive slope, but that it depends on the assumed distribution in cluster ages. While the estimated uncertainties in \eta are factors of a few, we believe this is the first estimate made of this quantity to ``order of magnitude'' accuracy. We also compare our findings to theoretical models of open and globular cluster evolution, incorporating the X-ray binary fraction per cluster.Comment: 20 pages, 6 figures, accepted by Ap

    Chandra Reveals Heavy Obscuration and Circumnuclear Star Formation in Seyfert 2 Galaxy NGC 4968

    Full text link
    We present the Chandra imaging and spectral analysis of NGC 4968, a nearby (z = 0.00986) Seyfert 2 galaxy. We discover extended (∼\sim1 kpc) X-ray emission in the soft band (0.5 - 2 keV) that is neither coincident with the narrow line region nor the extended radio emission. Based on spectral modeling, it is linked to on-going star formation (∼\sim2.6-4 M_{\sun} yr−1^{-1}). The soft emission at circumnuclear scales (inner ∼\sim400 pc) originates from hot gas, with kT ∼\sim 0.7 keV, while the most extended thermal emission is cooler (kT ∼\sim 0.3 keV). We refine previous measurements of the extreme Fe Kα\alpha equivalent width in this source (EW = 2.5−1.0+2.6^{+2.6}_{-1.0} keV), which suggests the central engine is completely embedded within Compton-thick levels of obscuration. Using physically motivated models fit to the Chandra spectrum, we derive a Compton-thick column density (NH>1.25×1024N_{\rm H} > 1.25\times10^{24} cm−2^{-2}) and an intrinsic hard (2-10 keV) X-ray luminosity of ∼\sim3-8×1042\times 10^{42} erg s−1^{-1} (depending on the presumed geometry of the obscurer), which is over two orders of magnitude larger than that observed. The large Fe Kα\alpha EW suggests a spherical covering geometry, which could be confirmed with X-ray measurements above 10 keV. NGC 4968 is similar to other active galaxies that exhibit extreme Fe Kα\alpha EWs (i.e., >>2 keV) in that they also contain ongoing star formation. This work supports the idea that gas associated with nuclear star formation may increase the covering factor of the enshrouding gas and play a role in obscuring AGN.Comment: 11 pages, 8 figures, 4 tables. Accepted for publication in Ap
    • …
    corecore