3 research outputs found

    Aggressive saliency-aware point cloud compression

    Full text link
    The increasing demand for accurate representations of 3D scenes, combined with immersive technologies has led point clouds to extensive popularity. However, quality point clouds require a large amount of data and therefore the need for compression methods is imperative. In this paper, we present a novel, geometry-based, end-to-end compression scheme, that combines information on the geometrical features of the point cloud and the user's position, achieving remarkable results for aggressive compression schemes demanding very small bit rates. After separating visible and non-visible points, four saliency maps are calculated, utilizing the point cloud's geometry and distance from the user, the visibility information, and the user's focus point. A combination of these maps results in a final saliency map, indicating the overall significance of each point and therefore quantizing different regions with a different number of bits during the encoding process. The decoder reconstructs the point cloud making use of delta coordinates and solving a sparse linear system. Evaluation studies and comparisons with the geometry-based point cloud compression (G-PCC) algorithm by the Moving Picture Experts Group (MPEG), carried out for a variety of point clouds, demonstrate that the proposed method achieves significantly better results for small bit rates

    SHREC 2022: Fitting and recognition of simple geometric primitives on point clouds

    Full text link
    This paper presents the methods that have participated in the SHREC 2022 track on the fitting and recognition of simple geometric primitives on point clouds. As simple primitives we mean the classical surface primitives derived from constructive solid geometry, i.e., planes, spheres, cylinders, cones and tori. The aim of the track is to evaluate the quality of automatic algorithms for fitting and recognising geometric primitives on point clouds. Specifically, the goal is to identify, for each point cloud, its primitive type and some geometric descriptors. For this purpose, we created a synthetic dataset, divided into a training set and a test set, containing segments perturbed with different kinds of point cloud artifacts. Among the six participants to this track, two are based on direct methods, while four are either fully based on deep learning or combine direct and neural approaches. The performance of the methods is evaluated using various classification and approximation measures

    SHREC 2021 Track:Retrieval and classification of protein surfaces equipped with physical and chemical properties

    No full text
    This paper presents the methods that have participated in the SHREC 2021 contest on retrieval and classification of protein surfaces on the basis of their geometry and physicochemical properties. The goal of the contest is to assess the capability of different computational approaches to identify different conformations of the same protein, or the presence of common sub-parts, starting from a set of molecular surfaces. We addressed two problems: defining the similarity solely based on the surface geometry or with the inclusion of physicochemical information, such as electrostatic potential, amino acid hydrophobicity, and the presence of hydrogen bond donors and acceptors. Retrieval and classification performances, with respect to the single protein or the existence of common sub-sequences, are analysed according to a number of information retrieval indicators
    corecore