88 research outputs found

    Transport fingerprints at graphene superlattice Dirac points induced by a boron nitride substrate

    Get PDF
    Under the terms of the Creative Commons Attribution License 3.0 (CC-BY).We report peculiar transport fingerprints at the secondary Dirac points created by the interaction between graphene and boron nitride layers. By performing ab initio calculations, the electronic characteristics of the moiré patterns produced by the interaction between layers are first shown to be in good agreement with experimental data, and further used to calibrate the tight-binding model implemented for the transport study. By means of a real-space order-N quantum transport (Kubo) methodology, low-energy (Dirac point) transport properties are contrasted with those of high-energy (secondary) Dirac points, including both Anderson disorder and Gaussian impurities to respectively mimic short-range and long-range scattering potentials. Mean free paths at the secondary Dirac points are found to range from 10 nm to a few hundreds of nm depending on the static disorder, while the observation of satellite resistivity peaks depends on the strength of quantum interferences and localization effects.This work was funded by Spanish FEDER-MINECO (Grants No. FIS2009-12721-C04-01 and No. CSD2007-00041) and AGAUR (Grant No. FI-DGR 2011FI B 00993). S.R. acknowledges support from the Spanish Ministry of Economy and Competitiveness (under Contract No. MAT2012-33911). The research leading to these results has received funding from the European Union Seventh Framework Programme under Grant Agreement No. 604391 “Graphene Flagship”.Peer Reviewe

    Transport fingerprints at graphene superlattice Dirac points induced by a boron nitride substrate

    Get PDF
    We report peculiar transport fingerprints at the secondary Dirac points created by the interaction between graphene and boron nitride layers. By performing ab initio calculations, the electronic characteristics of the moiré patterns produced by the interaction between layers are first shown to be in good agreement with experimental data, and further used to calibrate the tight-binding model implemented for the transport study. By means of a real-space order-N quantum transport (Kubo) methodology, low-energy (Dirac point) transport properties are contrasted with those of high-energy (secondary) Dirac points, including both Anderson disorder and Gaussian impurities to respectively mimic short-range and long-range scattering potentials. Mean free paths at the secondary Dirac points are found to range from 10 nm to a few hundreds of nm depending on the static disorder, while the observation of satellite resistivity peaks depends on the strength of quantum interferences and localization effects

    Band selection and disentanglement using maximally-localized Wannier functions: the cases of Co impurities in bulk copper and the Cu (111) surface

    Get PDF
    We have adapted the maximally-localized Wannier function approach of [I. Souza, N. Marzari and D. Vanderbilt, Phys. Rev. B 65, 035109 (2002)] to the density functional theory based Siesta method [J. M. Soler et al., J. Phys.: Cond. Mat. 14, 2745 (2002)] and applied it to the study of Co substitutional impurities in bulk copper as well as to the Cu (111) surface. In the Co impurity case, we have reduced the problem to the Co d-electrons and the Cu sp-band, permitting us to obtain an Anderson-like Hamiltonian from well defined density functional parameters in a fully orthonormal basis set. In order to test the quality of the Wannier approach to surfaces, we have studied the electronic structure of the Cu (111) surface by again transforming the density functional problem into the Wannier representation. An excellent description of the Shockley surface state is attained, permitting us to be confident in the application of this method to future studies of magnetic adsorbates in the presence of an extended surface state

    Piezoelectric monolayers as nonlinear energy harvesters

    Get PDF
    We study the dynamics of h-BN monolayers by first performing ab-initio calculations of the deformation potential energy and then solving numerically a Langevine-type equation to explore their use in nonlinear vibration energy harvesting devices. An applied compressive strain is used to drive the system into a nonlinear bistable regime, where quasi-harmonic vibrations are combined with low-frequency swings between the minima of a double-well potential. Due to its intrinsic piezoelectric response, the nonlinear mechanical harvester naturally provides an electrical power that is readily available or can be stored by simply contacting the monolayer at its ends. Engineering the induced nonlinearity, a 20 nm device is predicted to harvest an electrical power of up to 0.18 pW for a noisy vibration of 5 pN

    Anion ordering transition and Fermi surface electron-hole instabilities in the (TMTSF)2ClO4and (TMTSF)2NO3Bechgaard salts analyzed through the first-principles Lindhard response function

    Get PDF
    The first-principles electron-hole Lindhard response function has been calculated and analyzed in detail for two (TMTSF)2 X (X = ClO4 and NO3) Bechgaard salts undergoing different anion-ordering (AO) transitions. The calculation was carried out using the real triclinic low-temperature structures. The evolution of the electron-hole response with temperature for both relaxed and quenched salts is discussed. It is shown that the 2k F response of the quenched samples of both salts display a low temperature curved and tilted triangular continuum of maxima. This is not the case for the relaxed samples. (TMTSF)2ClO4 in the AO state exhibits a more quasi-1D response than in the non AO state and relaxed (TMTSF)2NO3 shows a sharp maximum. The curved triangular plateau of the quenched samples results from multiple nesting of the warped quasi-1D Fermi surface which implies the existence of a large q range of electron-hole fluctuations. This broad maxima region is around 1% of the Brillouin zone area for the X = ClO4 salt (and X = PF6) but only 0.1% for the X = NO3 salt. It is suggested that the strong reduction of associated SDW fluctuations could explain the non detection of the SDW-mediated superconductivity in (TMTSF)2NO3. The calculated maxima of the Lindhard response nicely account for the modulation wave vector experimentally determined by NMR in the SDW ground state of the two salts. The critical AO wave vector for both salts is located in regions where the Lindhard response is a minimum so that they are unrelated to any electron-hole instability. The present first-principles calculation reveals 3D effects in the Lindhard response of the two salts at low temperature which are considerably more difficult to model in analytical approaches

    Fermi surface electron-hole instability of the (TMTSF)2PF6 Bechgaard salt revealed by the first-principles Lindhard response function

    Get PDF
    Altres ajuts: CERCA Programme/Generalitat de CatalunyaWe report the first-principles DFT calculation of the electron-hole Lindhard response function of the (TMTSF)PF Bechgaard salt using the real triclinic low-temperature structure. The Lindhard response is found to change considerably with temperature. Near the 2k spin density wave (SDW) instability it has the shape of a broad triangular plateau as a result of the multiple nesting associated with the warped quasi-one-dimensional Fermi surface. The evolution of the 2k broad maximum as well as the effect of pressure and deuteration is calculated and analyzed. The thermal dependence of the electron-hole coherence length deduced from these calculations compares very well with the experimental thermal evolution of the 2k bond order wave correlation length. The existence of a triangular plateau of maxima in the low-temperature electron-hole Lindhard response of (TMTSF)PF should favor a substantial mixing of q-dependent fluctuations which can have important consequences in understanding the phase diagram of the 2k SDW ground state, the mechanism of superconductivity and the magneto-transport of this paradigmatic quasi-one-dimensional material. The first-principles DFT Lindhard response provides a very accurate and unbiased approach to the low-temperature instabilities of (TMTSF)PF which can take into account in a simple way 3D effects and subtle structural variations, thus providing a very valuable tool in understanding the remarkable physics of molecular conductors

    Metallic diluted dimerization in VO2 tweeds

    Get PDF
    Altres ajuts: ICN2 was also supported by the CERCA programme (Generalitat de Catalunya).The observation of electronic phase separation textures in vanadium dioxide, a prototypical electron-correlated oxide, has recently added new perspectives on the long standing debate about its metal-insulator transition and its applications. Yet, the lack of atomically resolved information on phases accompanying such complex patterns still hinders a comprehensive understanding of the transition and its implementation in practical devices. In this work, atomic resolution imaging and spectroscopy unveils the existence of ferroelastic tweed structures on ≈5 nm length scales, well below the resolution limit of currently used spectroscopic imaging techniques. Moreover, density functional theory calculations show that this pretransitional fine-scale tweed, which on average looks and behaves like the standard metallic rutile phase, is in fact weaved by semi-dimerized chains of vanadium in a new monoclinic phase that represents a structural bridge to the monoclinic insulating ground state. These observations provide a multiscale perspective for the interpretation of existing data, whereby phase coexistence and structural intermixing can occur all the way down to the atomic scale

    Thermal and transport properties of pristine single-layer hexagonal boron nitride : a first principles investigation

    Get PDF
    Molecular dynamics is used in combination with density functional theory to determine the thermal transport properties of the single-layer hexagonal boron nitride (SL h-BN) from ab initio calculations. Within this approach, the possible anisotropy in the thermal conductivity of SL h-BN was studied. For samples with finite length (of the order of 20 nm), we find a significant dependence of the conductivity on the transport direction. We make a direct comparison of the results obtained for two-dimensional (2D) layers and for nanoribbons with similar size, and show that, as a consequence of edge scattering, the ribbon geometry induces a significant decrease in the conductivity, and produces a strong change in the anisotropy. For the zigzag and armchair transport directions, the dependence of the thermal conductivity on the system length was also obtained, as well as its value in the 2D bulk limit case. A very small anisotropy was found for the limit of long samples, in contrast with the finite length ones. This is explained analyzing the dependence of the average square group velocities on the transport direction and the phonon frequency

    2 × 2 charge density wave in single-layer TiTe₂

    Get PDF
    A density functional theory study concerning the origin of the recently reported 2 × 2 charge density wave (CDW) instability in single-layer TiTe₂ is reported. It is shown that, whereas calculations employing the semi-local functional PBE favor the undistorted structure, the hybrid functional HSE06 correctly predicts a 2 × 2 distortion. The study suggests that the magnitude of the semimetallic overlap between the valence band top at - and the conduction band bottom at M is a key factor controlling the tendency towards the distortion. It is also shown that tensile strain stabilizes a 2 × 2 CDW, and we suggest that this fact could be further used to induce the instability in doublelayers of TiTe₂, which in the absence of strain remain undistorted in the experiment. The driving force for the CDW instability seems to be the same phonon mediated mechanism acting for singlelayer TiSe2, although in single-layer TiTe₂ the driving force is smaller, and the semimetallic character is kept below the transition temperature

    Atomically sharp lateral superlattice heterojunctions built-in nitrogen-doped nanoporous graphene

    Get PDF
    Altres ajuts: this research was funded by the CERCA Programme/Generalitat de Catalunya.Nanometer scale lateral heterostructures with atomically sharp band discontinuities can be conceived as the 2D analogues of vertical Van der Waals heterostructures, where pristine properties of each component coexist with interfacial phenomena that result in a variety of exotic quantum phenomena. However, despite considerable advances in the fabrication of lateral heterostructures, controlling their covalent interfaces and band discontinuities with atomic precision, scaling down components and producing periodic, lattice-coherent superlattices still represent major challenges. Here, a synthetic strategy to fabricate nanometer scale, coherent lateral superlattice heterojunctions with atomically sharp band discontinuity is reported. By merging interdigitated arrays of different types of graphene nanoribbons by means of a novel on-surface reaction, superlattices of 1D, and chemically heterogeneous nanoporous junctions are obtained. The latter host subnanometer quantum dipoles and tunneling in-gap states, altogether expected to promote interfacial phenomena such as interribbon excitons or selective photocatalysis
    corecore