1,086 research outputs found

    Asteroseismology and calibration of alpha Cen binary system

    Full text link
    Using the oscillation frequencies of alpha Cen A recently discovered by Bouchy & Carrier, the available astrometric, photometric and spectroscopic data, we tried to improve the calibration of the visual binary system alpha Cen. With the revisited masses of Pourbaix et al. (2002) we do not succeed to obtain a solution satisfying all the seismic observational constraints. Relaxing the constraints on the masses, we have found an age t_alpha Cen=4850+-500 Myr, an initial helium mass fraction Y_i = 0.300+-0.008, and an initial metallicity (Z/X)_i=0.0459+-0.0019, with M_A=1.100+-0.006M_o and M_B=0.907+-0.006M_o for alpha Cen A&B.Comment: accepted for publication as a letter in A&

    Calibrations of alpha Cen A & B

    Full text link
    Detailed evolutionary models of the visual binary alpha Centauri, including pre main-sequence evolution, have been performed using the masses recently determined by Pourbaix et al. (1999). Models have been constructed using the CEFF equation of state, OPAL opacities, NACRE thermonuclear reaction rates and microscopic diffusion. A chi^2-minimization is performed to derive the most reliable set of modeling parameters wp={t_alpha Cen, Yi, [Fe/H]i, alpha A, alpha B}, where t alpha Cen is the age of the system, Yi the initial helium content, [Fe/H]i the initial metallicity and, alpha A and alpha B the convection parameters of the two components. Using the basic Bohm-Vitense (1958) mixing-length theory of convection, we derive wp BV={2710 Myr, 0.284,0.257, 1.53, 1.57}. We obtain a noticeably smaller age than estimated previously, in agreement with Pourbaix et al. (1999), mainly because of the larger masses. If convective core overshoot is considered we get wp ov={3530 Myr, 0.279,0.264,1.64,1.66}. The use of Canuto & Mazitelli (1991, 1992) convection theory leads to the set wp CM={4086 Myr, 0.271, 0.264, 0.964, 0.986}. Using the observational constraints adopted by Guenther & Demarque (2000), and the basic mixing-length theory, we obtain wp GD={5640 Myr, 0.300, 0.296, 1.86, 1.97} and surface lithium depletions close to their observed values. A seismological analysis of our calibrated models has been performed. The determination of large and small spacings between the frequencies of acoustic oscillations from seismic observations would help to discriminate between the models of alpha Cen computed with different masses and to confirm or rules out the new determination of masses.Comment: accepted for publication by A&

    Statics and dynamics of an Ashkin-Teller neural network with low loading

    Full text link
    An Ashkin-Teller neural network, allowing for two types of neurons is considered in the case of low loading as a function of the strength of the respective couplings between these neurons. The storage and retrieval of embedded patterns built from the two types of neurons, with different degrees of (in)dependence is studied. In particular, thermodynamic properties including the existence and stability of Mattis states are discussed. Furthermore, the dynamic behaviour is examined by deriving flow equations for the macroscopic overlap. It is found that for linked patterns the model shows better retrieval properties than a corresponding Hopfield model.Comment: 20 pages, 6 figures, Latex with postscript figures in one tar.gz fil

    Relativistic r-modes in Slowly Rotating Neutron Stars: Numerical Analysis in the Cowling Approximation

    Get PDF
    We investigate the properties of relativistic rr-modes of slowly rotating neutron stars by using a relativistic version of the Cowling approximation. In our formalism, we take into account the influence of the Coriolis like force on the stellar oscillations, but ignore the effects of the centrifugal like force. For three neutron star models, we calculated the fundamental rr-modes with l=m=2l'=m=2 and 3. We found that the oscillation frequency σˉ\bar\sigma of the fundamental rr-mode is in a good approximation given by σˉκ0Ω\bar\sigma\approx \kappa_0 \Omega, where σˉ\bar\sigma is defined in the corotating frame at the spatial infinity, and Ω\Omega is the angular frequency of rotation of the star. The proportional coefficient κ0\kappa_0 is only weakly dependent on Ω\Omega, but it strongly depends on the relativistic parameter GM/c2RGM/c^2R, where MM and RR are the mass and the radius of the star. All the fundamental rr-modes with l=ml'=m computed in this study are discrete modes with distinct regular eigenfunctions, and they all fall in the continuous part of the frequency spectrum associated with Kojima's equation (Kojima 1998). These relativistic rr-modes are obtained by including the effects of rotation higher than the first order of Ω\Omega so that the buoyant force plays a role, the situation of which is quite similar to that for the Newtonian rr-modes.Comment: 22 pages, 8 figures, accepted for publication in Ap

    VINCI / VLTI observations of Main Sequence stars

    Full text link
    Main Sequence (MS) stars are by far the most numerous class in the Universe. They are often somewhat neglected as they are relatively quiet objects (but exceptions exist), though they bear testimony of the past and future of our Sun. An important characteristic of the MS stars, particularly the solar-type ones, is that they host the large majority of the known extrasolar planets. Moreover, at the bottom of the MS, the red M dwarfs pave the way to understanding the physics of brown dwarfs and giant planets. We have measured very precise angular diameters from recent VINCI/VLTI interferometric observations of a number of MS stars in the K band, with spectral types between A1V and M5.5V. They already cover a wide range of effective temperatures and radii. Combined with precise Hipparcos parallaxes, photometry, spectroscopy as well as the asteroseismic information available for some of these stars, the angular diameters put strong constraints on the detailed models of these stars, and therefore on the physical processes at play.Comment: 5 pages, 3 figures. To appear in the Proceedings of IAU Symposium 219, "Stars as Suns", Editors A. Benz & A. Dupree, Astronomical Society of the Pacifi

    Ensembles of probability estimation trees for customer churn prediction

    Get PDF
    Customer churn prediction is one of the most, important elements tents of a company's Customer Relationship Management, (CRM) strategy In tins study, two strategies are investigated to increase the lift. performance of ensemble classification models, i.e (1) using probability estimation trees (PETs) instead of standard decision trees as base classifiers; and (n) implementing alternative fusion rules based on lift weights lot the combination of ensemble member's outputs Experiments ale conducted lot font popular ensemble strategics on five real-life chin n data sets In general, the results demonstrate how lift performance can be substantially improved by using alternative base classifiers and fusion tides However: the effect vanes lot the (Idol cut ensemble strategies lit particular, the results indicate an increase of lift performance of (1) Bagging by implementing C4 4 base classifiets. (n) the Random Subspace Method (RSM) by using lift-weighted fusion rules, and (in) AdaBoost, by implementing both

    Gravitational Radiation Instability in Hot Young Neutron Stars

    Get PDF
    We show that gravitational radiation drives an instability in hot young rapidly rotating neutron stars. This instability occurs primarily in the l=2 r-mode and will carry away most of the angular momentum of a rapidly rotating star by gravitational radiation. On the timescale needed to cool a young neutron star to about T=10^9 K (about one year) this instability can reduce the rotation rate of a rapidly rotating star to about 0.076\Omega_K, where \Omega_K is the Keplerian angular velocity where mass shedding occurs. In older colder neutron stars this instability is suppressed by viscous effects, allowing older stars to be spun up by accretion to larger angular velocities.Comment: 4 Pages, 2 Figure

    The CoRoT Evolution and Seismic Tools Activity: Goals and Tasks

    Full text link
    The forthcoming data expected from space missions such as CoRoT require the capacity of the available tools to provide accurate models whose numerical precision is well above the expected observational errors. In order to secure that these tools meet the specifications, a team has been established to test and, when necessary, to improve the codes available in the community. The CoRoT evolution and seismic tool activity (ESTA) has been set up with this mission. Several groups have been involved. The present paper describes the motivation and the organisation of this activity, providing the context and the basis for the presentation of the results that have been achieved so far. This is not a finished task as future even better data will continue to demand more precise and complete tools for asteroseismology.Comment: 11 pages, 3 figures, accepted for publication in Astrophysics and Space Science, 'CoRoT ESTA' special volum

    Self-field effects upon the critical current density of flat superconducting strips

    Full text link
    We develop a general theory to account self-consistently for self-field effects upon the average transport critical current density Jc of a flat type-II superconducting strip in the mixed state when the bulk pinning is characterized by a field-dependent depinning critical current density Jp(B), where B is the local magnetic flux density. We first consider the possibility of both bulk and edge-pinning contributions but conclude that bulk pinning dominates over geometrical edge-barrier effects in state-of-the-art YBCO films and prototype second-generation coated conductors. We apply our theory using the Kim model, JpK(B) = JpK(0)/(1+|B|/B0), as an example. We calculate Jc(Ba) as a function of a perpendicular applied magnetic induction Ba and show how Jc(Ba) is related to JpK(B). We find that Jc(Ba) is very nearly equal to JpK(Ba) when Ba > Ba*, where Ba* is the value of Ba that makes the net flux density zero at the strip's edge. However, Jc(Ba) is suppressed relative to JpK(Ba) at low fields when Ba < Ba*, with the largest suppression occurring when Ba*/B0 is of order unity or larger.Comment: 9 pages, 4 figures, minor revisions to add four reference
    corecore