11 research outputs found

    Structure and mechanics of supporting cells in the guinea pig organ of Corti.

    Get PDF
    The mechanical properties of the mammalian organ of Corti determine its sensitivity to sound frequency and intensity, and the structure of supporting cells changes progressively with frequency along the cochlea. From the apex (low frequency) to the base (high frequency) of the guinea pig cochlea inner pillar cells decrease in length incrementally from 75-55 µm whilst the number of axial microtubules increases from 1,300-2,100. The respective values for outer pillar cells are 120-65 µm and 1,500-3,000. This correlates with a progressive decrease in the length of the outer hair cells from >100 µm to 20 µm. Deiters'cell bodies vary from 60-50 µm long with relatively little change in microtubule number. Their phalangeal processes reflect the lengths of outer hair cells but their microtubule numbers do not change systematically. Correlations between cell length, microtubule number and cochlear location are poor below 1 kHz. Cell stiffness was estimated from direct mechanical measurements made previously from isolated inner and outer pillar cells. We estimate that between 200 Hz and 20 kHz axial stiffness, bending stiffness and buckling limits increase, respectively,~3, 6 and 4 fold for outer pillar cells, ~2, 3 and 2.5 fold for inner pillar cells and ~7, 20 and 24 fold for the phalangeal processes of Deiters'cells. There was little change in the Deiters'cell bodies for any parameter. Compensating for effective cell length the pillar cells are likely to be considerably stiffer than Deiters'cells with buckling limits 10-40 times greater. These data show a clear relationship between cell mechanics and frequency. However, measurements from single cells alone are insufficient and they must be combined with more accurate details of how the multicellular architecture influences the mechanical properties of the whole organ

    Proline-based phosphoramidite reagents for the reductive ligation of S-nitrosothiols

    No full text
    S-Nitrosothiols (RSNOs) have many biological implications but are rarely used in organic synthesis. In this work we report the development of proline-based phosphoramidite substrates that can effectively convert RSNOs to proline-based sulfenamides through a reductive ligation process. A unique property of this method is that the phosphine oxide moiety on the ligation products can be readily removed under acidic conditions. In conjugation with the facile preparation of RSNOs from the corresponding thiols (RSHs), this method provides a new way to prepare proline-based sulfenamides from simple thiol starting materials

    Discovery and Optimization of DNA Gyrase and Topoisomerase IV Inhibitors with Potent Activity against Fluoroquinolone-Resistant Gram-Positive Bacteria.

    Get PDF
    Herein, we describe the discovery and optimization of a novel series that inhibits bacterial DNA gyrase and topoisomerase IV via binding to, and stabilization of, DNA cleavage complexes. Optimization of this series led to the identification of compound 25, which has potent activity against Gram-positive bacteria, a favorable in vitro safety profile, and excellent in vivo pharmacokinetic properties. Compound 25 was found to be efficacious against fluoroquinolone-sensitive Staphylococcus aureus infection in a mouse thigh model at lower doses than moxifloxacin. An X-ray crystal structure of the ternary complex formed by topoisomerase IV from Klebsiella pneumoniae, compound 25, and cleaved DNA indicates that this compound does not engage in a water-metal ion bridge interaction and forms no direct contacts with residues in the quinolone resistance determining region (QRDR). This suggests a structural basis for the reduced impact of QRDR mutations on antibacterial activity of 25 compared to fluoroquinolones

    Profiling psychomotor and cognitive aging in four-way cross mice

    No full text
    In part due to their genetic uniformity and stable characteristics, inbred rodents or their F1 progeny are frequently used to study brain aging. However, it is recognized that focus on a single genotype could lead to generalizations about brain aging that might not apply to the species as a whole, or to the human population. As a potential alternative to uniform genotypes, genetically heterogeneous (HET) mice, produced by a four-way cross, were tested in the current study to determine if they exhibit age-related declines in cognitive and psychomotor function similar to other rodent models of brain aging. Young (4 months) and older (23 months) CB6F1 × C3D2F1 mice were administered a variety of tests for cognitive, psychomotor, and sensory/reflexive capacities. Spontaneous locomotion, rearing, and ability to turn in an alley all decreased with age, as did behavioral measures sensitive to muscle strength, balance, and motor coordination. Although no effect of age was found for either startle response amplitude or reaction time to shock stimuli, the old mice reacted with less force to low intensity auditory stimuli. When tested on a spatial swim maze task, the old mice learned less efficiently, exhibited poorer retention after a 66-h delay, and demonstrated greater difficulty learning a new spatial location. In addition, the older mice were less able to learn the platform location when it was identified by a local visual cue. Because there was a significant correlation between spatial and cued discrimination performance in the old mice, it is possible that age-related spatial maze learning deficits could involve visual or motor impairments. Variation among individuals increased with age for most tests of psychomotor function, as well as for spatial swim performance, suggesting that four-way cross mice may be appropriate models of individualized brain aging. However, the analysis of spatial maze learning deficits in older CB6F1 × C3D2F1 mice may have limited applicability in the study of brain aging, because of a confounding with visually cued performance deficits

    Genomic and Genetic Diversity within the Pseudomonas fluorescens Complex

    No full text

    Affective Cognition and its Disruption in Mood Disorders

    No full text
    In this review, we consider affective cognition, responses to emotional stimuli occurring in the context of cognitive evaluation. In particular, we discuss emotion categorization, biasing of memory and attention, as well as social/moral emotion. We discuss limited neuropsychological evidence suggesting that affective cognition depends critically on the amygdala, ventromedial frontal cortex, and the connections between them. We then consider neuroimaging studies of affective cognition in healthy volunteers, which have led to the development of more sophisticated neural models of these processes. Disturbances of affective cognition are a core and specific feature of mood disorders, and we discuss the evidence supporting this claim, both from behavioral and neuroimaging perspectives. Serotonin is considered to be a key neurotransmitter involved in depression, and there is a considerable body of research exploring whether serotonin may mediate disturbances of affective cognition. The final section presents an overview of this literature and considers implications for understanding the pathophysiology of mood disorder as well as developing and evaluating new treatment strategies
    corecore