599 research outputs found

    Two-channel conduction in YbPtBi

    Full text link
    We investigated transport, magnetotransport, and broadband optical properties of the half-Heusler compound YbPtBi. Hall measurements evidence two types of charge carriers: highly mobile electrons with a temperature-dependent concentration and low-mobile holes; their concentration stays almost constant within the investigated temperature range from 2.5 to 300 K. The optical spectra (10 meV - 2.7 eV) can be naturally decomposed into contributions from intra- and interband absorption processes, the former manifesting themselves as two Drude bands with very different scattering rates, corresponding to the charges with different mobilities. These results of the optical measurements allow us to separate the contributions from electrons and holes to the total conductivity and to implement a two-channel-conduction model for description of the magnetotransport data. In this approach, the electron and hole mobilities are found to be around 50000 and 10 cm2^{2}/Vs at the lowest temperatures (2.5 K), respectively.Comment: 6 page

    Pressure-dependent optical investigations of α\alpha-(BEDT-TTF)2_2I3_3: tuning charge order and narrow gap towards a Dirac semimetal

    Full text link
    Infrared optical investigations of α\alpha-(BEDT-TTF)2_2I3_3 have been performed in the spectral range from 80 to 8000~cm1^{-1} down to temperatures as low as 10~K by applying hydrostatic pressure. In the metallic state, T>135T > 135~K, we observe a 50\% increase in the Drude contribution as well as the mid-infrared band due to the growing intermolecular orbital overlap with pressure up to 11~kbar. In the ordered state, T<TCOT<T_{\rm CO}, we extract how the electronic charge per molecule varies with temperature and pressure: Transport and optical studies demonstrate that charge order and metal-insulator transition coincide and consistently yield a linear decrease of the transition temperature TCOT_{\rm CO} by 898-9~K/kbar. The charge disproportionation Δρ\Delta\rho diminishes by 0.017 e0.017~e/kbar and the optical gap Δ\Delta between the bands decreases with pressure by -47~cm1^{-1}/kbar. In our high-pressure and low-temperature experiments, we do observe contributions from the massive charge carriers as well as from massless Dirac electrons to the low-frequency optical conductivity, however, without being able to disentangle them unambiguously.Comment: 13 pages, 17 figures, submitted to Phys. Rev.

    The Normal Red Letter, volume 6, number 1, October (1904)

    Get PDF
    https://red.mnstate.edu/normalredletter/1032/thumbnail.jp

    On the correspondence between the classical and quantum gravity

    Get PDF
    The relationship between the classical and quantum theories of gravity is reexamined. The value of the gravitational potential defined with the help of the two-particle scattering amplitudes is shown to be in disagreement with the classical result of General Relativity given by the Schwarzschild solution. It is shown also that the potential so defined fails to describe whatever non-Newtonian interactions of macroscopic bodies. An alternative interpretation of the 0\hbar^0-order part of the loop corrections is given directly in terms of the effective action. Gauge independence of that part of the one-loop radiative corrections to the gravitational form factors of the scalar particle is proved, justifying the interpretation proposed.Comment: Latex 2.09, 3 ps. figures, 17 page

    Compositional variation of thin PZT films near morphotropic phase boundary: experiment and simulation

    Full text link
    The work was partly supported by the Ministry for Education and Science (Russian Federation) (Grant No 16.2811.2017/4.6) and RFBR (Grant No 16-02-00632)

    Optical conductivity and penetration depth in MgB2

    Full text link
    The complex conductivity of a MgB2 film has been investigated in the frequency range 4 cm^{-1}< nu < 30 cm^{-1} and for temperatures 2.7 K < T <300 K. The overall temperature dependence of both components of the complex conductivity is reminiscent of BCS-type behavior, although a detailed analysis reveals a number of discrepancies. No characteristic feature of the isotropic BCS gap temperature evolution is observed in the conductivity spectra in the superconducting state. A peak in the temperature dependence of the real part of the conductivity is detected for frequencies below 9 cm^{-1}. The superconducting penetration depth follows a T^2 behavior at low temperatures.Comment: 4 pages, 4 figure

    Observation of non-local dielectric relaxation in glycerol

    Full text link
    Since its introduction, liquid viscosity and relaxation time τ\tau have been considered to be an intrinsic property of the system that is essentially local in nature and therefore independent of system size. We perform dielectric relaxation experiments in glycerol, and find that this is the case at high temperature only. At low temperature, τ\tau increases with system size and becomes non-local. We discuss the origin of this effect in a picture based on liquid elasticity length, the length over which local relaxation events in a liquid interact via induced elastic waves, and find good agreement between experiment and theory

    Universal relationship between the penetration depth and the normal-state conductivity in YBaCuO

    Full text link
    The absolute values of the conductivity in the normal state sigma_n and of the low temperature penetration depths lambda(0) were measured for a number of different samples of the YBaCuO family. We found a striking correlation between sigma_n and 1/lambda^2, regardless of doping, oxygen reduction or defects, thus providing a simple method to predict the superconducting penetration depth and to have an estimate of the sample quality by measuring the normal-state conductivity.Comment: 7 pages, 1 figure, Europhys. Lett., accepte

    Cerebellar anaplastic astrocytoma in adult patients: 15 consecutive cases from a single institution and literature review

    Get PDF
    Adult cerebellar anaplastic astrocytomas (cAA) are rare entities and their clinical and genetic appearances are still ill defined. Previously, malignant gliomas of the cerebellum were combined and reviewed together (cAA and cerebellar glioblastomas (cGB), that could have possibly affected overall survival (OS) and progression-free survival (PFS). We present characteristics of 15 adult patients with cAA and compared them to a series of 45 patients with a supratentorial AA (sAA) in order to elicit the effect of tumor location on OS and PFS. The mean age at cAA diagnosis was 39.3 years (range 19–72). A history of neurofibromatosis type I was noted in 1 patient (6.7%). An IDH-1 mutation was identified in 6/15 cases and a methylated MGMT promoter in 5/15 cases. Patients in study and control groups were matched in age, sex and IDH-1 mutation status. Patients in a study group tended to present with longer overall survival (50 vs. 36.5 months), but the difference did not reach statistical significance. In both cAA and supratentorial AA groups presence of the IDH-1 mutation remains a positive predictor for the prolonged survival. The present study suggests that adult cAA constitute a group of gliomas with relatively higher rate of IDH-1 mutations and prognosis similar to supratentorial AA. The present study is the first to systematically compare cAA and supratentorial AA with respect to their genetic characteristics and suggests that both groups show a similar survival prognosis
    corecore