64 research outputs found

    Excellent leukemia control after second hematopoietic cell transplants with unrelated cord blood grafts for post-transplant relapse in pediatric patients

    Get PDF
    BackgroundPatients with leukemia relapse after allogeneic hematopoietic cell transplant (HCT) have poor survival due to toxicity and disease progression. A second HCT often offers the only curative treatment.MethodsWe retrospectively reviewed our bi-institutional experience (MSKCC-USA; Utrecht-NL) with unrelated cord blood transplantation (CBT) for treatment of post-transplant relapse. Overall survival (OS) and event-free survival (EFS) were evaluated using the Kaplan-Meier method, treatment-related mortality (TRM) and relapse were evaluated using the competing risk method by Fine-Gray.ResultsTwenty-six patients age < 21 years received a second (n=24) or third (n=2) HCT with CB grafts during the period 2009-2021. Median age at first HCT (HCT1) was 11.5 (range: 0.9-17.7) years and all patients received myeloablative cytoreduction. Median time from HCT1 to relapse was 12.8 (range 5.5-189) months. At CBT, median patient age was 13.5 (range 1.4-19.1) years. Diagnoses were AML: 13; ALL: 4, MDS: 5, JMML: 2; CML: 1; mixed phenotype acute leukemia: 1. Sixteen patients (62%) were in advanced stage, either CR>2 or with active disease. Median time from HCT1 to CBT was 22.2 (range 7-63.2) months. All patients engrafted after CBT. Thirteen patients developed acute GvHD; 7 had grade III or IV. With a median survivor follow-up of 46.6 (range 17.4-155) months, 3-year OS was 69.2% (95% CI 53.6-89.5%) and 3-year EFS was 64.9% (95% CI 48.8-86.4%). Eight patients died, 3 of AML relapse and 5 due to toxicity (respiratory failure [n=4], GvHD [n=1]) at a median time of 7.7 (range 5.9-14.4) months after CBT. Cumulative incidence of TRM at 3 years was 19.2% (95% CI 4.1-34.4%). Notably, all TRM events occurred in patients transplanted up to 2015; no toxicity-related deaths were seen in the 16 patients who received CBT after 2015. Cumulative incidence of relapse was 15.9% (95% CI 1.6-30.2%) at 3 years, remarkably low for these very high-risk patients.ConclusionsSurvival was very encouraging following CB transplants in pediatric patients with recurrent leukemia after first HCT, and TRM has been low over the last decade. CBT needs to be strongly considered as a relatively safe salvage therapy option for post-transplant relapse

    Epstein-Barr virus-associated post-transplant lymphoproliferative disorders: beyond chemotherapy treatment

    No full text
    Post-transplant lymphoproliferative disorder (PTLD) is a rare but life-threatening complication of both allogeneic solid organ (SOT) and hematopoietic cell transplantation (HCT). The histology of PTLD ranges from benign polyclonal lymphoproliferation to a lesion indistinguishable from classic monoclonal lymphoma. Most commonly, PTLDs are Epstein-Barr virus (EBV) positive and result from loss of immune surveillance over EBV. Treatment for PTLD differs from the treatment for typical non-Hodgkin lymphoma because prognostic factors are different, resistance to treatment is unique, and there are specific concerns for organ toxicity. While recipients of HCT have a limited time during which they are at risk for this complication, recipients of SOT have a lifelong requirement for immunosuppression, so approaches that limit compromising or help restore immune surveillance are of high interest. Furthermore, while EBV-positive and EBV-negative PTLDs are not intrinsically resistant to chemotherapy, the poor tolerance of chemotherapy in the post-transplant setting makes it essential to minimize potential treatment-related toxicities and explore alternative treatment algorithms. Therefore, reduced-toxicity approaches such as single-agent CD20 monoclonal antibodies or bortezomib, reduced dosing of standard chemotherapeutic agents, and non-chemotherapy-based approaches such as cytotoxic T cells have all been explored. Here, we review the chemotherapy and non-chemotherapy treatment landscape for PTLD

    Functional Assessment of αEβ7/E-cadherin Interactions in the Steady State Postnatal Thymus

    Get PDF
    T cell differentiation in the thymus depends on sequential interactions between lymphoid progenitors and stromal cells in discrete regions of the cortex. Here, we show that despite αEβ7 expression by a subset of the earliest intrathymic precursors (and E-cadherin expression by thymic stroma), interaction of these elements is not required for proper localization of early progenitors into the cortex, or for successful steady state differentiation. These findings indicate that despite in vitro data demonstrating αEβ7 mediated adhesion and proliferation of intrathymic T cell precursor populations, T lymphocyte development can proceed independently of αEβ7/E-cadherin interactions

    Regulation of Thymus Size by Competition for Stromal Niches among Early T Cell Progenitors

    No full text
    • …
    corecore