488 research outputs found
Minimizing the effect of sinusoidal trends in detrended fluctuation analysis
The detrended fluctuation analysis (DFA) [Peng et al., 1994] and its
extensions (MF-DFA) [Kantelhardt et al., 2002] have been used extensively to
determine possible long-range correlations in self-affine signals. While the
DFA has been claimed to be a superior technique, recent reports have indicated
its susceptibility to trends in the data. In this report, a smoothing filter is
proposed to minimize the effect of sinusoidal trends and distortion in the
log-log plots obtained by DFA and MF-DFA techniques
Is a multiple excitation of a single atom equivalent to a single excitation of an ensemble of atoms?
Recent technological advances have enabled to isolate, control and measure
the properties of a single atom, leading to the possibility to perform
statistics on the behavior of single quantum systems. These experiments have
enabled to check a question which was out of reach previously: Is the
statistics of a repeatedly excitation of an atom N times equivalent to a single
excitation of an ensemble of N atoms? We present a new method to analyze
quantum measurements which leads to the postulation that the answer is most
probably no. We discuss the merits of the analysis and its conclusion.Comment: 3 pages, 3 figure
Multiple-Resampling Receiver Design for OFDM Over Doppler-Distorted Underwater Acoustic Channels
Cataloged from PDF version of article.In this paper, we focus on orthogonal frequency-divisionmultiplexing
(OFDM) receiver designs for underwater acoustic
(UWA) channels with user- and/or path-specific Doppler scaling
distortions. The scenario is motivated by the cooperative communications
framework, where distributed transmitter/receiver
pairs may experience significantly different Doppler distortions, as
well as by the single-user scenarios, where distinct Doppler scaling
factors may exist among different propagation paths. The conventional
approach of front–end resampling that corrects for common
Doppler scalingmay not be appropriatein such scenarios, rendering
a post-fast-Fourier-transform (FFT) signal that is contaminated by
user- and/or path-specific intercarrier interference. To counteract
this problem, we propose a family of front–end receiver structures
thatutilizemultiple-resampling (MR)branches,eachmatched to the
Doppler scaling factor of a particular user and/or path. Following
resampling, FFT modules transform the Doppler-compensated
signals into the frequency domain for further processing through
linear or nonlinear detection schemes. As part of the overall receiver
structure, a gradient–descent approachis also proposed to refine the
channel estimates obtained by standard sparse channel estimators.
The effectiveness and robustness of the proposed receivers are
demonstrated via simulations, as well as emulations based on real
data collected during the 2010 Mobile Acoustic Communications
Experiment (MACE10, Martha’s Vineyard, MA) and the 2008
Kauai Acomms MURI (KAM08, Kauai, HI) experiment
Quantum storage on subradiant states in an extended atomic ensemble
A scheme for coherent manipulation of collective atomic states is developed
such that total subradiant states, in which spontaneous emission is suppressed
into all directions due to destructive interference between neighbor atoms, can
be created in an extended atomic ensemble. The optimal conditions for creation
of such states and suitability of them for quantum storage are discussed. It is
shown that in order to achieve the maximum signal-to-noise ratio the shape of a
light pulse to be stored and reconstructed using a homogeneously broadened
absorbtion line of an atomic system should be a time-reversed regular part of
the response function of the system. In the limit of high optical density, such
pulses allow one to prepare collective subradiant atomic states with near flat
spatial distribution of the atomic excitation in the medium.Comment: V2: considerably revised (title, text). V3: minor changes - final
version as published in PR
Kinetic Enhancement of Raman Backscatter, and Electron Acoustic Thomson Scatter
1-D Eulerian Vlasov-Maxwell simulations are presented which show kinetic
enhancement of stimulated Raman backscatter (SRBS) due to electron trapping in
regimes of heavy linear Landau damping. The conventional Raman Langmuir wave is
transformed into a set of beam acoustic modes [L. Yin et al., Phys. Rev. E 73,
025401 (2006)]. For the first time, a low phase velocity electron acoustic wave
(EAW) is seen developing from the self-consistent Raman physics. Backscatter of
the pump laser off the EAW fluctuations is reported and referred to as electron
acoustic Thomson scatter. This light is similar in wavelength to, although much
lower in amplitude than, the reflected light between the pump and SRBS
wavelengths observed in single hot spot experiments, and previously interpreted
as stimulated electron acoustic scatter [D. S. Montgomery et al., Phys. Rev.
Lett. 87, 155001 (2001)]. The EAW is strongest well below the phase-matched
frequency for electron acoustic scatter, and therefore the EAW is not produced
by it. The beating of different beam acoustic modes is proposed as the EAW
excitation mechanism, and is called beam acoustic decay. Supporting evidence
for this process, including bispectral analysis, is presented. The linear
electrostatic modes, found by projecting the numerical distribution function
onto a Gauss-Hermite basis, include beam acoustic modes (some of which are
unstable even without parametric coupling to light waves) and a strongly-damped
EAW similar to the observed one. This linear EAW results from non-Maxwellian
features in the electron distribution, rather than nonlinearity due to electron
trapping.Comment: 15 pages, 16 figures, accepted in Physics of Plasmas (2006
Universal analytic properties of noise. Introducing the J-Matrix formalism
We propose a new method in the spectral analysis of noisy time-series data
for damped oscillators. From the Jacobi three terms recursive relation for the
denominators of the Pad\'e Approximations built on the well-known Z-transform
of an infinite time-series, we build an Hilbert space operator, a J-Operator,
where each bound state (inside the unit circle in the complex plane) is simply
associated to one damped oscillator while the continuous spectrum of the
J-Operator, which lies on the unit circle itself, is shown to represent the
noise. Signal and noise are thus clearly separated in the complex plane. For a
finite time series of length 2N, the J-operator is replaced by a finite order
J-Matrix J_N, having N eigenvalues which are time reversal covariant. Different
classes of input noise, such as blank (white and uniform), Gaussian and pink,
are discussed in detail, the J-Matrix formalism allowing us to efficiently
calculate hundreds of poles of the Z-transform. Evidence of a universal
behaviour in the final statistical distribution of the associated poles and
zeros of the Z-transform is shown. In particular the poles and zeros tend, when
the length of the time series goes to infinity, to a uniform angular
distribution on the unit circle. Therefore at finite order, the roots of unity
in the complex plane appear to be noise attractors. We show that the
Z-transform presents the exceptional feature of allowing lossless undersampling
and how to make use of this property. A few basic examples are given to suggest
the power of the proposed method.Comment: 14 pages, 8 figure
Performanse višeimpulsno-pozicijske amplitudne modulacije za TH IR-UWB komunikacijske sustave
The multi pulse position amplitude modulation scheme for time-hopping multiple access impulse radio ultrawideband communication systems has been presented in this paper. Multi pulse position amplitude modulation is a hybrid modulation technique, which combines multi pulse position modulation and pulse amplitude modulation. It is shown that multi pulse position amplitude modulation significantly outperforms pulse position modulation with respect to bandwidth efficiency. The multi pulse position amplitude modulation error probability over IEEE 802.15.3a multipath fading channels in multiuser environment is derived. The system analysis shows that the proper selection of modulation parameters can improve the system performance at the cost of hardware complexity (and vice versa).U ovom je radu predstavljena višeimpulsno-pozicijska amplitudna modulacijska shema za impulsne ultraširokopojasne radiokomunikacijske sustave, zasnovana na višekorisničkom pristupu s vremenskim skakanjem. Višeimpulsno-pozicijska amplitudna modulacija je hibridni modulacijski postupak, koji je kombinacija višeimpulsno-pozicijske modulacije i impulsno-amplitudne modulacije. Pokazano je da višeimpulsno-pozicijska amplitudna modulacija značajno nadmašuje impulsno-pozicijsku modulaciju u pogledu pojasne učinkovitosti. Izvedena je vjerojatnost pogreške višeimpulsno-pozicijske amplitudne modulacije u kanalu IEEE 802.15.3a s višestaznim rasprostiranjem i iščezavanjem signala u višekorisničkom okruženju. Analiza sustava pokazuje da odgovaraju ći izbor parametara modulacije može poboljšati performanse sustava uz povećanje složenosti sklopovlja (i obrnuto)
Testing the assumptions of linear prediction analysis in normal vowels
This paper develops an improved surrogate data test to show experimental evidence, for all the simple vowels of US English, for both male and female speakers, that Gaussian linear prediction analysis, a ubiquitous technique in current speech technologies, cannot be used to extract all the dynamical structure of real speech time series. The test provides robust evidence undermining the validity of these linear techniques, supporting the assumptions of either dynamical nonlinearity and/or non-Gaussianity common to more recent, complex, efforts at dynamical modelling speech time series. However, an additional finding is that the classical assumptions cannot be ruled out entirely, and plausible evidence is given to explain the success of the linear Gaussian theory as a weak approximation to the true, nonlinear/non-Gaussian dynamics. This supports the use of appropriate hybrid linear/nonlinear/non-Gaussian modelling. With a calibrated calculation of statistic and particular choice of experimental protocol, some of the known systematic problems of the method of surrogate data testing are circumvented to obtain results to support the conclusions to a high level of significance
Analysis of cubic permutation polynomials for turbo codes
Quadratic permutation polynomials (QPPs) have been widely studied and used as
interleavers in turbo codes. However, less attention has been given to cubic
permutation polynomials (CPPs). This paper proves a theorem which states
sufficient and necessary conditions for a cubic permutation polynomial to be a
null permutation polynomial. The result is used to reduce the search complexity
of CPP interleavers for short lengths (multiples of 8, between 40 and 352), by
improving the distance spectrum over the set of polynomials with the largest
spreading factor. The comparison with QPP interleavers is made in terms of
search complexity and upper bounds of the bit error rate (BER) and frame error
rate (FER) for AWGN and for independent fading Rayleigh channels. Cubic
permutation polynomials leading to better performance than quadratic
permutation polynomials are found for some lengths.Comment: accepted for publication to Wireless Personal Communications (19
pages, 4 figures, 5 tables). The final publication is available at
springerlink.co
Symmetric M-ary phase discrimination using quantum-optical probe states
We present a theoretical study of minimum error probability discrimination,
using quantum- optical probe states, of M optical phase shifts situated
symmetrically on the unit circle. We assume ideal lossless conditions and full
freedom for implementing quantum measurements and for probe state selection,
subject only to a constraint on the average energy, i.e., photon number. In
particular, the probe state is allowed to have any number of signal and
ancillary modes, and to be pure or mixed. Our results are based on a simple
criterion that partitions the set of pure probe states into equivalence classes
with the same error probability performance. Under an energy constraint, we
find the explicit form of the state that minimizes the error probability. This
state is an unentangled but nonclassical single-mode state. The error
performance of the optimal state is compared with several standard states in
quantum optics. We also show that discrimination with zero error is possible
only beyond a threshold energy of (M - 1)/2. For the M = 2 case, we show that
the optimum performance is readily demonstrable with current technology. While
transmission loss and detector inefficiencies lead to a nonzero erasure
probability, the error rate conditional on no erasure is shown to remain the
same as the optimal lossless error rate.Comment: 13 pages, 10 figure
- …