6 research outputs found

    A thermosyphon-driven hydrothermal flow-through cell for in situ and time-resolved neutron diffraction studies

    Get PDF
    A flow-through cell for hydrothermal phase transformation studies by in situ and time-resolved neutron diffraction has been designed and constructed. The cell has a large internal volume of 320 ml and can operate at temperatures up to 573 K under autogenous vapor pressures (ca 8.5 106 Pa). The fluid flow is driven by a thermosyphon, which is achieved by the proper design of temperature difference around the closed loop. The main body of the cell is made of stainless steel (316 type), but the sample compartment is constructed from non-scattering Ti–Zr alloy. The cell has been successfully commissioned on Australia’s new high-intensity powder diffractometer WOMBAT at the Australian Nuclear Science and Technology Organization, using two simple phase transformation reactions from KAlSi2O6 (leucite) to NaAlSi2O6H2O (analcime) and then back from NaAlSi2O6H2O to KAlSi2O6 as examples. The demonstration proved that the cell is an excellent tool for probing hydrothermal crystallization. By collecting diffraction data every 5 min, it was clearly seen that KAlSi2O6 was progressively transformed to NaAlSi2O6H2O in a sodium chloride solution, and the produced NaAlSi2O6H2O was progressively transformed back to KAlSi2O6 in a potassium carbonate solution

    Single-pass flow-through reaction cell for high-temperature and high-pressure in situ neutron diffraction studies of hydrothermal crystallization processes

    Get PDF
    A large-volume single-pass flow-through cell for in situ neutron diffraction investigation of hydrothermal crystallization processes is reported. The cell is much more versatile than previous designs owing to the ability to control independently and precisely temperature (up to 673 K), pressure (up to 46 MPa), flow rate (0.01-10 ml min-1) and reaction-fluid volume ( 65 ml). Such versatility is realized by an innovative design consisting of a room-temperature and ambient-pressure external fluid supply module, a high-pressure reaction module which includes a high-temperature sample compartment enclosed in a vacuum furnace, and a room-temperature and high-pressure backpressure regulation module for pressure control. The cell provides a new avenue for studying various parameters of hydrothermal crystallizations independently, in situ and in real time at extreme hydrothermal conditions (e.g. supercritical). The cell was successfully commissioned on the high-intensity powder diffractometer beamline, Wombat, at the Australian Nuclear Science and Technology Organisation by investigating the effect of pressure on the hydrothermal pseudomorphic conversion from SrSO4 (celestine) to SrCO3 (strontianite) at a constant temperature of 473 K and flow rate of 5 ml min-1. The results show that the increase of pressure exerts a nonlinear effect on the conversion rate, which first increases with increasing pressure from 14 to 20 MPa, and then decreases when pressure further increases to 24 MPa.F. Xia, J. Brugger, G. Qian, Y. Ngothai, B. O'Neill, J. Zhao, S. Pullen, S. Olsen and A. Prin
    corecore