596 research outputs found
Electroluminescence in silicon oxynitride films
Electroluminescence (EL) was reported from 50 nm silicon oxynitride films on p-type crystalline silicon substrates in a Au/silicon oxynitride/Si structure. The EL intensity is consisted with radiative recombination of injected carriers, and has a peak below 2.45 eV. The EL can only be seen in annealed samples with the emission similar to the photoluminescence from the same samples
Translating transcriptomic findings from cancer model systems to humans through joint dimension reduction
Model systems are an essential resource in cancer research. They simulate effects that we can infer into humans, but come at a risk of inaccurately representing human biology. This inaccuracy can lead to inconclusive experiments or misleading results, urging the need for an improved process for translating model system findings into human-relevant data. We present a process for applying joint dimension reduction (jDR) to horizontally integrate gene expression data across model systems and human tumor cohorts. We then use this approach to combine human TCGA gene expression data with data from human cancer cell lines and mouse model tumors. By identifying the aspects of genomic variation joint-acting across cohorts, we demonstrate how predictive modeling and clinical biomarkers from model systems can be improved
3D simulations of linearized scalar fields in Kerr spacetime
We investigate the behavior of a dynamical scalar field on a fixed Kerr
background in Kerr-Schild coordinates using a 3+1 dimensional spectral
evolution code, and we measure the power-law tail decay that occurs at late
times. We compare evolutions of initial data proportional to f(r)
Y_lm(theta,phi) where Y_lm is a spherical harmonic and (r,theta,phi) are
Kerr-Schild coordinates, to that of initial data proportional to f(r_BL)
Y_lm(theta_BL,phi), where (r_BL,theta_BL) are Boyer-Lindquist coordinates. We
find that although these two cases are initially almost identical, the
evolution can be quite different at intermediate times; however, at late times
the power-law decay rates are equal.Comment: 12 pages, 9 figures, revtex4. Major revision: added figures, added
subsection on convergence, clarified discussion. To appear in Phys Rev
Characterization of the luminescence center in photo- and electroluminescent amorphous silicon oxynitride films
We have studied the photoluminescence (PL) mechanism of photo- and electroluminescent amorphous silicon oxynitride films grown by plasma enhanced chemical vapor deposition. The composition of the films was determined by Rutherford backscattering spectrometry and monitored by the index of refraction with single-wavelength ellipsometry. Two sets of samples were grown, each with different reactant gas residence times in the deposition chamber. For samples grown with a residence time of about 5 s, the energy of the PL peak for 2.54 eV excitation is 2.3 eV for stoichiometric films and redshifts with increasing silicon content to 1.7 eV for the most silicon-rich films. The energy of the PL peak for 3.8 eV excitation is 2.8 eV for stoichiometric films and 2.1 eV for the most silicon-rich films. For stoichiometric films, the PL intensity is independent of temperature between 80 and 300 K using 2.54 eV excitation, but the PL intensity decreases by a factor of two over the same temperature range for 3.8 eV excitation. The authors interpret these aspects of the PL as consistent with tail-state recombination. Other results imply the PL is due to a specific luminescence center related to Si-Si or Si-H bonding. A 450°C anneal reduces the paramagnetic defect density in the films, as detected by electron paramagnetic resonance, by an order of magnitude, but does not increase the PL intensity, while a 950°C anneal increases both the defect density and the PL intensity. In addition, films in a second set of samples, grown with a residence time of 1.8 s, display very different PL behavior than samples in the first set with the same composition. Samples near stoichiometry in the second set have a PL peak at 2.06 eV and are 20 times less intense than stoichiometric samples in the first set. Optical absorption measurements indicate both types of samples contain Si-Si bonds, with the second set containing many more Si-Si bonds than the first. Fourier-transform infrared measurements indicate the presence of a Si-H bond that is stable at temperatures of 950°C in the first set, but not in the second set. Thus, the study as a whole suggests a complete picture of luminescence in our silicon oxynitride films must incorporate elements of both tail-state and luminescence center models. The relation of the results to other PL studies in silicon alloys and porous silicon is discussed
New empirical fits to the proton electromagnetic form factors
Recent measurements of the ratio of the elastic electromagnetic form factors
of the proton, G_Ep/G_Mp, using the polarization transfer technique at
Jefferson Lab show that this ratio decreases dramatically with increasing Q^2,
in contradiction to previous measurements using the Rosenbluth separation
technique. Using this new high quality data as a constraint, we have reanalyzed
most of the world e-p elastic cross section data. In this paper, we present a
new empirical fit to the reanalyzed data for the proton elastic magnetic form
factor in the region 0 < Q^2 < 30 GeV^2. As well, we present an empirical fit
to the proton electromagnetic form factor ratio, G_Ep/G_Mp, which is valid in
the region 0.1 < Q^2 < 6 GeV^2
Genetic determinants of cellular addiction to DNA polymerase theta
Polymerase theta (Pol θ, gene name Polq) is a widely conserved DNA polymerase that mediates a microhomology-mediated, error-prone, double strand break (DSB) repair pathway, referred to as Theta Mediated End Joining (TMEJ). Cells with homologous recombination deficiency are reliant on TMEJ for DSB repair. It is unknown whether deficiencies in other components of the DNA damage response (DDR) also result in Pol θ addiction. Here we use a CRISPR genetic screen to uncover 140 Polq synthetic lethal (PolqSL) genes, the majority of which were previously unknown. Functional analyses indicate that Pol θ/TMEJ addiction is associated with increased levels of replication-associated DSBs, regardless of the initial source of damage. We further demonstrate that approximately 30% of TCGA breast cancers have genetic alterations in PolqSL genes and exhibit genomic scars of Pol θ/TMEJ hyperactivity, thereby substantially expanding the subset of human cancers for which Pol θ inhibition represents a promising therapeutic strategy
Circular orbits of corotating binary black holes: comparison between analytical and numerical results
We compare recent numerical results, obtained within a ``helical Killing
vector'' (HKV) approach, on circular orbits of corotating binary black holes to
the analytical predictions made by the effective one body (EOB) method (which
has been recently extended to the case of spinning bodies). On the scale of the
differences between the results obtained by different numerical methods, we
find good agreement between numerical data and analytical predictions for
several invariant functions describing the dynamical properties of circular
orbits. This agreement is robust against the post-Newtonian accuracy used for
the analytical estimates, as well as under choices of resummation method for
the EOB ``effective potential'', and gets better as one uses a higher
post-Newtonian accuracy. These findings open the way to a significant
``merging'' of analytical and numerical methods, i.e. to matching an EOB-based
analytical description of the (early and late) inspiral, up to the beginning of
the plunge, to a numerical description of the plunge and merger. We illustrate
also the ``flexibility'' of the EOB approach, i.e. the possibility of
determining some ``best fit'' values for the analytical parameters by
comparison with numerical data.Comment: Minor revisions, accepted for publication in Phys. Rev. D, 19 pages,
6 figure
Search for the Proton Decay Mode proton to neutrino K+ in Soudan 2
We have searched for the proton decay mode proton to neutrino K+ using the
one-kiloton Soudan 2 high resolution calorimeter. Contained events obtained
from a 3.56 kiloton-year fiducial exposure through June 1997 are examined for
occurrence of a visible K+ track which decays at rest into mu+ nu or pi+ pi0.
We found one candidate event consistent with background, yielding a limit,
tau/B > 4.3 10^{31} years at 90% CL with no background subtraction.Comment: 13 pages, Latex, 3 tables and 3 figures, Accepted by Physics Letters
Gravitational radiation from a particle in circular orbit around a black hole. V. Black-hole absorption and tail corrections
A particle of mass moves on a circular orbit of a nonrotating black
hole of mass . Under the restrictions and , where
is the orbital velocity, we consider the gravitational waves emitted by such a
binary system. We calculate , the rate at which the gravitational
waves remove energy from the system. The total energy loss is given by , where denotes that part of the
gravitational-wave energy which is carried off to infinity, while
denotes the part which is absorbed by the black hole. We show that the
black-hole absorption is a small effect: . We
also compare the wave generation formalism which derives from perturbation
theory to the post-Newtonian formalism of Blanchet and Damour. Among other
things we consider the corrections to the asymptotic gravitational-wave field
which are due to wave-propagation (tail) effects.Comment: ReVTeX, 17 page
- …