65 research outputs found

    Examining changes in sexual lifestyles in Britain between 1990-2010: a latent class analysis approach

    Get PDF
    BACKGROUND: Understanding sexual lifestyles and how they change over time is important for determining the likelihood of sexual health outcomes. Standard descriptive and regression methods are limited in their ability to capture multidimensional concepts such as sexual lifestyles. Latent Class Analysis (LCA) is a mixture modelling method that generates a categorical latent variable to derive homogenous groups from a heterogeneous population. Our study investigates (1) the potential of LCA to assess change over time in sexual lifestyles and (2) how quantifying this change using LCA compares to previous findings using standard approaches. METHODS: Probability-sampled data from three rounds of the National Survey of Sexual Attitudes and Lifestyle (Natsal) were used, restricted to sexually active participants (i.e., those reporting sexual partners in the past year) aged 16-44 years (N1990 = 11,738; N2000 = 9,690; N2010 = 8,397). An LCA model was built from four variables: number of sexual partners (past year), number of partners without a condom (past year), age at first sex and self-perceived HIV risk. Covariates included age, ethnicity, educational attainment, same-sex attraction, and marital status. Multinomial regression analyses and Chi-Squared tests were used to investigate change over time in the size of each class. RESULTS: We successfully used a LCA approach to examine change in sexual lifestyle over time. We observed a statistically significant increase between 1990 and 2010 in the proportion of men (χ2 = 739.49, p < 0.01) and women (χ2 = 1270.43, p < 0.01) in a latent class associated with reporting 2 or more partners in the last year, relatively high probabilities of reporting condomless sex partners, greater self-perceived HIV risk, and a high probability of first sex before age 16 years, increasing from 19.5% to 31.1% (men) and 9.9% to 22.1% (women). CONCLUSION: Our results indicate the viability of LCA models to assess change over time for complex behavioural phenomena. They align with previous findings, namely changing sexual lifestyles in Britain in recent decades, partnership number driving class assignment, and significant sex differences in sexual lifestyles. This approach can be used to extend previous LCA models (e.g., to investigate the impact of COVID-19 on sexual lifestyles) and to support empirical evidence of change over time, facilitating more nuanced public health policy

    Modeling of the HIV infection epidemic in the Netherlands: A multi-parameter evidence synthesis approach

    Full text link
    Multi-parameter evidence synthesis (MPES) is receiving growing attention from the epidemiological community as a coherent and flexible analytical framework to accommodate a disparate body of evidence available to inform disease incidence and prevalence estimation. MPES is the statistical methodology adopted by the Health Protection Agency in the UK for its annual national assessment of the HIV epidemic, and is acknowledged by the World Health Organization and UNAIDS as a valuable technique for the estimation of adult HIV prevalence from surveillance data. This paper describes the results of utilizing a Bayesian MPES approach to model HIV prevalence in the Netherlands at the end of 2007, using an array of field data from different study designs on various population risk subgroups and with a varying degree of regional coverage. Auxiliary data and expert opinion were additionally incorporated to resolve issues arising from biased, insufficient or inconsistent evidence. This case study offers a demonstration of the ability of MPES to naturally integrate and critically reconcile disparate and heterogeneous sources of evidence, while producing reliable estimates of HIV prevalence used to support public health decision-making.Comment: Published in at http://dx.doi.org/10.1214/11-AOAS488 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Evidence Synthesis for Stochastic Epidemic Models.

    Get PDF
    In recent years, the role of epidemic models in informing public health policies has progressively grown. Models have become increasingly realistic and more complex, requiring the use of multiple data sources to estimate all quantities of interest. This review summarises the different types of stochastic epidemic models that use evidence synthesis and highlights current challenges

    Estimating the number of people with hepatitis C virus who have ever injected drugs and have yet to be diagnosed: an evidence synthesis approach for Scotland.

    Get PDF
    AIMS: To estimate the number of people who have ever injected drugs (defined here as PWID) living in Scotland in 2009 who have been infected with the hepatitis C virus (HCV) and to quantify and characterize the population remaining undiagnosed. METHODS: Information from routine surveillance (n=22616) and survey data (n=2511) was combined using a multiparameter evidence synthesis approach to estimate the size of the PWID population, HCV antibody prevalence and the proportion of HCV antibody prevalent cases who have been diagnosed, in subgroups defined by recency of injecting (in the last year or not), age (15-34 and 35-64 years), gender and region of residence (Greater Glasgow and Clyde and the rest of Scotland). RESULTS: HCV antibody-prevalence among PWID in Scotland during 2009 was estimated to be 57% [95% CI=52-61%], corresponding to 46657 [95% credible interval (CI)=33812-66803] prevalent cases. Of these, 27434 (95% CI=14636-47564) were undiagnosed, representing 59% [95% CI=43-71%] of prevalent cases. Among the undiagnosed, 83% (95% CI=75-89%) were PWID who had not injected in the last year and 71% (95% CI=58-85%) were aged 35-64 years. CONCLUSIONS: The number of undiagnosed hepatitis C virus-infected cases in Scotland appears to be particularly high among those who have injected drugs more than 1 year ago and are more than 35 years old

    Estimating age-stratified influenza-associated invasive pneumococcal disease in England: A time-series model based on population surveillance data.

    Get PDF
    BACKGROUND: Measures of the contribution of influenza to Streptococcus pneumoniae infections, both in the seasonal and pandemic setting, are needed to predict the burden of secondary bacterial infections in future pandemics to inform stockpiling. The magnitude of the interaction between these two pathogens has been difficult to quantify because both infections are mainly clinically diagnosed based on signs and symptoms; a combined viral-bacterial testing is rarely performed in routine clinical practice; and surveillance data suffer from confounding problems common to all ecological studies. We proposed a novel multivariate model for age-stratified disease incidence, incorporating contact patterns and estimating disease transmission within and across groups. METHODS AND FINDINGS: We used surveillance data from England over the years 2009 to 2017. Influenza infections were identified through the virological testing of samples taken from patients diagnosed with influenza-like illness (ILI) within the sentinel scheme run by the Royal College of General Practitioners (RCGP). Invasive pneumococcal disease (IPD) cases were routinely reported to Public Health England (PHE) by all the microbiology laboratories included in the national surveillance system. IPD counts at week t, conditional on the previous time point t-1, were assumed to be negative binomially distributed. Influenza counts were linearly included in the model for the mean IPD counts along with an endemic component describing some seasonal background and an autoregressive component mimicking pneumococcal transmission. Using age-specific counts, Akaike information criterion (AIC)-based model selection suggested that the best fit was obtained when the endemic component was expressed as a function of observed temperature and rainfall. Pneumococcal transmission within the same age group was estimated to explain 33.0% (confidence interval [CI] 24.9%-39.9%) of new cases in the elderly, whereas 50.7% (CI 38.8%-63.2%) of incidence in adults aged 15-44 years was attributed to transmission from another age group. The contribution of influenza on IPD during the 2009 pandemic also appeared to vary greatly across subgroups, being highest in school-age children and adults (18.3%, CI 9.4%-28.2%, and 6.07%, CI 2.83%-9.76%, respectively). Other viral infections, such as respiratory syncytial virus (RSV) and rhinovirus, also seemed to have an impact on IPD: RSV contributed 1.87% (CI 0.89%-3.08%) to pneumococcal infections in the 65+ group, whereas 2.14% (CI 0.87%-3.57%) of cases in the group of 45- to 64-year-olds were attributed to rhinovirus. The validity of this modelling strategy relies on the assumption that viral surveillance adequately represents the true incidence of influenza in the population, whereas the small numbers of IPD cases observed in the younger age groups led to significant uncertainty around some parameter estimates. CONCLUSIONS: Our estimates suggested that a pandemic wave of influenza A/H1N1 with comparable severity to the 2009 pandemic could have a modest impact on school-age children and adults in terms of IPD and a small to negligible impact on infants and the elderly. The seasonal impact of other viruses such as RSV and rhinovirus was instead more important in the older population groups
    • …
    corecore