352 research outputs found
Polymorphic cytochrome P450 enzymes (CYPs) and their role in personalized therapy
The cytochrome P450 (CYP) enzymes are major players in drug metabolism. More than 2,000 mutations have been described, and certain single nucleotide polymorphisms (SNPs) have been shown to have a large impact on CYP activity. Therefore, CYPs play an important role in inter-individual drug response and their genetic variability should be factored into personalized medicine. To identify the most relevant polymorphisms in human CYPs, a text mining approach was used. We investigated their frequencies in different ethnic groups, the number of drugs that are metabolized by each CYP, the impact of CYP SNPs, as well as CYP expression patterns in different tissues. The most important polymorphic CYPs were found to be 1A2, 2D6, 2C9 and 2C19. Thirty-four common allele variants in Caucasians led to altered enzyme activity. To compare the relevant Caucasian SNPs with those of other ethnicities a search in 1,000 individual genomes was undertaken. We found 199 non-synonymous SNPs with frequencies over one percent in the 1,000 genomes, many of them not described so far. With knowledge of frequent mutations and their impact on CYP activities, it may be possible to predict patient response to certain drugs, as well as adverse side effects. With improved availability of genotyping, our data may provide a resource for an understanding of the effects of specific SNPs in CYPs, enabling the selection of a more personalized treatment regimen
The Transformer database: biotransformation of xenobiotics
As the number of prescribed drugs is constantly rising, drug-drug interactions are an important issue. The simultaneous administration of several drugs can cause severe adverse effects based on interactions with the same metabolizing enzyme(s). The Transformer database (http://bioinformatics.charite.de/transformer) contains integrated information on the three phases of biotransformation (modification, conjugation and excretion) of 3000 drugs and >350 relevant food ingredients (e.g. grapefruit juice) and herbs, which are catalyzed by 400 proteins. A total of 100 000 interactions were found through text mining and manual validation. The 3D structures of 200 relevant proteins are included. The database enables users to search for drugs with a visual display of known interactions with phase I (Cytochrome P450) and phase II enzymes, transporters, food and herbs. For each interaction, PubMed references are given. To detect mutual impairments of drugs, the drug-cocktail tool displays interactions between selected drugs. By choosing the indication for a drug, the tool offers suggestions for alternative medications to avoid metabolic conflicts. Drug interactions can also be visualized in an interactive network view. Additionally, prodrugs, including their mechanisms of activation, and further information on enzymes of biotransformation, including 3D models, can be viewed
DBEndo: a web-based endodontic case management tool
BACKGROUND: The success of endodontic treatment depends-among many other factors-on good documentation. Paper-based records are often difficult to read or incomplete and commercially available tools focus on billing. An electronic record captures the state of treatment at all times. Databases are a common tool in everyday life. RESULTS: Here, we present a database created for the Charite-Universitatsmedizin Berlin, Germany. Through consistent digital documentation, data analytics of patients, root canal anatomies, instrumentation techniques, efficacy of chemical disinfection, root filling techniques, and corresponding recall success rates, which needed extensive research before, are now easy to perform. Tables and even graphics and data analystics are only one click away and can be exported to other programs. CONCLUSIONS: DBEndo is a database to store and visualise internally, as well as to share endodontic cases online. For academic use we provide the database including all forms and some anonymous data for free at: http://dbendo.charite.de . Through easy import and export of the data, the system is open and flexible
mVOC 2.0: a database of microbial volatiles
Metabolic capabilities of microorganisms include the production of secondary metabolites (e.g. antibiotics). The analysis of microbial volatile organic compounds (mVOCs) is an emerging research field with huge impact on medical, agricultural and biotechnical applied and basic science. The mVOC database (v1) has grown with microbiome research and integrated species information with data on emitted volatiles. Here, we present the mVOC 2.0 database with about 2000 compounds from almost 1000 species and new features to work with the database. The extended collection of compounds was augmented with data regarding mVOC-mediated effects on plants, fungi, bacteria and (in-)vertebrates. The mVOC database 2.0 now features a mass spectrum finder, which allows a quick mass spectrum comparison for compound identification and the generation of species-specific VOC signatures. Automatic updates, useful links and search for mVOC literature are also included. The mVOC database aggregates and refines available information regarding microbial volatiles, with the ultimate aim to provide a comprehensive and informative platform for scientists working in this research field. To address this need, we maintain a publicly available mVOC database at: http://bioinformatics.charite.de/mvoc
SuperDRUG2: a one stop resource for approved/marketed drugs
Regular monitoring of drug regulatory agency web sites and similar resources for information on new drug approvals and changes to legal status of marketed drugs is impractical. It requires navigation through several resources to find complete information about a drug as none of the publicly accessible drug databases provide all features essential to complement in silico drug discovery. Here, we propose SuperDRUG2 (http://cheminfo.charite.de/superdrug2) as a comprehensive knowledge-base of approved and marketed drugs. We provide the largest collection of drugs (containing 4587 active pharmaceutical ingredients) which include small molecules, biological products and other drugs. The database is intended to serve as a one-stop resource providing data on: chemical structures, regulatory details, indications, drug targets, side-effects, physicochemical properties, pharmacokinetics and drug-drug interactions. We provide a 3D-superposition feature that facilitates estimation of the fit of a drug in the active site of a target with a known ligand bound to it. Apart from multiple other search options, we introduced pharmacokinetics simulation as a unique feature that allows users to visualise the 'plasma concentration versus time' profile for a given dose of drug with few other adjustable parameters to simulate the kinetics in a healthy individual and poor or extensive metabolisers
Inhibition of DNA-topoisomerase I by acylated triterpene saponins from pittosporum angustifolium Lodd
Previous phytochemical investigation of the leaves and seeds of Pittosporum angustifolium Lodd. led to the isolation and structural elucidation of polyphenols and triterpene saponins. Evaluation for cytotoxicity of isolated saponins revealed that the predominant structural feature for a cytotoxic activity are acyl substituents at the oleanane aglycon backbone. The present work reports the results of a screening of 10 selected acylated saponins for their potential to inhibit the human DNA-topoisomerase I, giving rise to IC50 values in a range of 2.8-46.5 microM. To clarify the mode of observed cytotoxic action and, moreover, to distinguish from a pure surfactant effect which is commonly accompanied with saponins, these results indicate an involvement of the topoisomerase I and its role as a possible target structure for a cytotoxic activity. In addition, computational predictions of the fitting of saponins to the topoisomerase I-DNA complex, indicate a similar binding mode to that of clinically used topoisomerase I inhibitors. Ten acylated triterpene saponins from Pittosporum angustifolium were investigated for their potential to inhibit the human DNA-topoisomerase I and computational predictions of the fitting of saponins to the topoisomerase I-DNA complex were carried out
ProTox-II: a webserver for the prediction of toxicity of chemicals
Advancement in the field of computational research has made it possible for the in silico methods to offer significant benefits to both regulatory needs and requirements for risk assessments, and pharmaceutical industry to assess the safety profile of a chemical. Here, we present ProTox-II that incorporates molecular similarity, pharmacophores, fragment propensities and machine-learning models for the prediction of various toxicity endpoints; such as acute toxicity, hepatotoxicity, cytotoxicity, carcinogenicity, mutagenicity, immunotoxicity, adverse outcomes pathways (Tox21) and toxicity targets. The predictive models are built on data from both in vitro assays (e.g. Tox21 assays, Ames bacterial mutation assays, hepG2 cytotoxicity assays, Immunotoxicity assays) and in vivo cases (e.g. carcinogenicity, hepatotoxicity). The models have been validated on independent external sets and have shown strong performance. ProTox-II provides a freely available webserver for in silico toxicity prediction for toxicologists, regulatory agencies, computational and medicinal chemists, and all users without login at http://tox.charite.de/protox_II. The webserver takes a two-dimensional chemical structure as an input and reports the possible toxicity profile of the chemical for 33 models with confidence scores, and an overall toxicity radar chart along with three most similar compounds with known acute toxicity
Evidence for treatment with estradiol for women with SARS-CoV-2 infection
Background: Given that an individual’s age and gender are strongly predictive of coronavirus disease 2019 (COVID-19) outcomes, do such factors imply anything about preferable therapeutic options? Methods: An analysis of electronic health records for a large (68,466-case), international COVID-19 cohort, in 5-year age strata, revealed age-dependent sex differences. In particular, we surveyed the effects of systemic hormone administration in women. The primary outcome for estradiol therapy was death. Odds ratios (ORs) and Kaplan-Meier survival curves were analyzed for 37,086 COVID-19 women in two age groups: pre- (15–49 years) and peri-/post-menopausal (> 50 years). Results: The incidence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is higher in women than men (by about + 15%) and, in contrast, the fatality rate is higher in men (about + 50%). Interestingly, the relationships between these quantities are linked to age: pre-adolescent girls and boys had the same risk of infection and fatality rate, while adult premenopausal women had a significantly higher risk of infection than men in the same 5-year age stratum (about 16,000 vs. 12,000 cases). This ratio changed again in peri- and postmenopausal women, with infection susceptibility converging with men. While fatality rates increased continuously with age for both sexes, at 50 years, there was a steeper increase for men. Thus far, these types of intricacies have been largely neglected. Because the hormone 17ß-estradiol influences expression of the human angiotensin-converting enzyme 2 (ACE2) protein, which plays a role in SARS-CoV-2 cellular entry, propensity score matching was performed for the women’s sub-cohort, comparing users vs. non-users of estradiol. This retrospective study of hormone therapy in female COVID-19 patients shows that the fatality risk for women > 50 years receiving estradiol therapy (user group) is reduced by more than 50%; the OR was 0.33, 95% CI [0.18, 0.62] and the hazard ratio (HR) was 0.29, 95% CI [0.11,0.76]. For younger, pre-menopausal women (15–49 years), the risk of COVID-19 fatality is the same irrespective of estradiol treatment, probably because of higher endogenous estradiol levels. Conclusions: As of this writing, still no effective drug treatment is available for COVID-19; since estradiol shows such a strong improvement regarding fatality in COVID-19, we suggest prospective studies on the potentially more broadly protective roles of this naturally occurring hormone
SuperCYPsPred - a web server for the prediction of cytochrome activity
Cytochrome P450 enzymes (CYPs)-mediated drug metabolism influences drug pharmacokinetics and results in adverse outcomes in patients through drug-drug interactions (DDIs). Absorption, distribution, metabolism, excretion and toxicity (ADMET) issues are the leading causes for the failure of a drug in the clinical trials. As details on their metabolism are known for just half of the approved drugs, a tool for reliable prediction of CYPs specificity is needed. The SuperCYPsPred web server is currently focused on five major CYPs isoenzymes, which includes CYP1A2, CYP2C19, CYP2D6, CYP2C9 and CYP3A4 that are responsible for more than 80% of the metabolism of clinical drugs. The prediction models for classification of the CYPs inhibition are based on well-established machine learning methods. The models were validated both on cross-validation and external validation sets and achieved good performance. The web server takes a 2D chemical structure as input and reports the CYP inhibition profile of the chemical for 10 models using different molecular fingerprints, along with confidence scores, similar compounds, known CYPs information of drugs-published in literature, detailed interaction profile of individual cytochromes including a DDIs table and an overall CYPs prediction radar chart (http://insilico-cyp.charite.de/SuperCYPsPred/).The web server does not require log in or registration and is free to use
mVOC: a database of microbial volatiles
Scents are well known to be emitted from flowers and animals. In nature, these volatiles are responsible for inter- and intra-organismic communication, e.g. attraction and defence. Consequently, they influence and improve the establishment of organisms and populations in ecological niches by acting as single compounds or in mixtures. Despite the known wealth of volatile organic compounds (VOCs) from species of the plant and animal kingdom, in the past, less attention has been focused on volatiles of microorganisms. Although fast and affordable sequencing methods facilitate the detection of microbial diseases, however, the analysis of signature or fingerprint volatiles will be faster and easier. Microbial VOCs (mVOCs) are presently used as marker to detect human diseases, food spoilage or moulds in houses. Furthermore, mVOCs exhibited antagonistic potential against pathogens in vitro, but their biological roles in the ecosystems remain to be investigated. Information on volatile emission from bacteria and fungi is presently scattered in the literature, and no public and up-to-date collection on mVOCs is available. To address this need, we have developed mVOC, a database available online at http://bioinformatics.charite.de/mvoc
- …