102 research outputs found

    Appendix 2

    Get PDF

    The Treatment of Juvenile Offenders in Murder Cases

    Get PDF

    Metal-organic Frameworks as Drug Delivery System for Cancer Therapy

    Get PDF
    Die Forschung an porösen Hybridmaterialien hat sich rasch entwickelt, und in letzter Zeit ist die Anzahl neuer Strukturen und Zusammensetzungen aufgrund ihrer vielfältigen Anwendungsmöglichkeiten im Bereich des Kristall-Engineering von großem Interesse. Metall-organische Gerüste (metal-organic frameworks, MOFs) sind eine aufstrebende Klasse von Nanomaterialien, deren Eigenschaften durch Variation der Bausteine, die aus Metallionen und organischen Liganden bestehen und sich koordinativ zu einer dreidimensionale Struktur verbinden lassen, leicht angepasst werden können. Eigenschaften wie eine große Oberfläche und eine hohe Porosität verleihen diesen Materialien vielversprechende Eigenschaften, um als Wirtsmaterial verwendet zu werden. Die vorliegende Arbeit konzentriert sich auf die Synthese der Verbindung [Fe3O(H2O)2(OH)(bdc)3]n (bcd = 1,4-Benzoldicarboxylat; MIL-101(Fe), MIL = Materials of Institut Lavoisier), die aus einem carboxylato-verbrückten, oxido-zentriertem, dreikernigen Fe3+-Komplex besteht. Die Struktur besitzt große Poren (Ø: 29 und 34 Å) und eine große Oberfläche mit der Fähigkeit, zahlreiche Moleküle einzuschließen. In der vorliegenden Arbeit wird MIL-101(Fe) als Arzneimittelabgabesystem verwendet. Curcumin, Capecitabin und 5-Fluorouracil (5-FU) wurden als Modellarzneimittel für die Verkapselung in der MIL-101(Fe)-Struktur ausgewählt. Es wurden verschiedene Freisetzungsregime in unterschiedlichen biologischen Medien untersucht. Nach vielversprechenden ersten Ergebnissen bei der Freisetzung dieser Medikamente aus der MIL-101(Fe)-Struktur wurde anschließend die selektive Lasersintertechnik (SLS) verwendet. Die SLS ist ein additives Schichtbauverfahren, das sich in dieser Arbeit als ressourcenschonende Technologie für die schnelle Herstellung erwiesen hat. Die Möglichkeit, die Größe, Form und Geometrie der hergestellten Proben individuell anzupassen, bot die Gelegenheit, die Wirkstofffreisetzung zu modulieren und den Freisetzungszeitraum zu verlängern.The field of porous hybrid materials has grown rapidly; recently the number of new structures and compositions are of great interest in the crystal-engineering field, due to their various possible applications. Metal-organic frameworks (MOFs) are an emerging class of nanomaterials, whose properties can be easily adjusted by varying the molecular building blocks, obtained from metal ions and organic ligands that can be combined to three-dimensional structures. Properties such as high surface area and high porosity give these materials promising characteristics to be used as host materials. The present work focuses on the synthesis of [Fe3O(H2O)2(OH)(bdc)3]n (bcd = 1,4-benzenedicarboxylate; MIL-101(Fe), MIL = Materials of Institut Lavoisier), composed of carboxylate-bridged, oxido-centered, trinuclear Fe3+ complexes. The iron-based structure features large pore sizes (Ø: 29 and 34 Å) and high surface area with the ability to encapsulate numerous molecules, for use as a drug delivery system in the present work. The curcumin, capecitabine, and 5-fluorouracil (5-FU) were chosen as model drugs for the encapsulation into the MIL-101(Fe) structure. Different delivery regimes were studied in different biological media. After promising initial results with the release of these drugs from the MIL-101(Fe) structure, the selective laser sintering technique (SLS) was introduced subsequently. The SLS is an additive layer manufacturing technique that has emerged in this work as a resourceful technology for rapid manufacturing, the possibility to customize the size, shape, and geometry of the manufactured samples, thus providing the opportunity to modulate the drug release extending it for even longer periods of time

    High-field and high-temperature magnetoresistance reveals the superconducting behaviour of the stacking faults in multilayer graphene

    Full text link
    In spite of 40 years of experimental studies and several theoretical proposals, an overall interpretation of the complex behavior of the magnetoresistance (MR) of multilayer graphene, i.e. graphite, at high fields (B70 B \lesssim 70~T) and in a broad temperature range is still lacking. Part of the complexity is due to the contribution of stacking faults (SFs), which most of thick enough multilayer graphene samples have. We propose a procedure that allows us to extract the SF contribution to the MR we have measured at 0.48~K T\leq T \leq 250~K and 0~TB\leq B \lesssim 65~T. We found that the MR behavior of part of the SFs is similar to that of granular superconductors with a superconducting critical temperature TcT_c \sim 350~K, in agreement with recent publications. The measurements were done on a multilayer graphene TEM lamella, contacting the edges of the two-dimensional SFs.Comment: 8 pages, 5 figure
    corecore