67 research outputs found
Perpendicular-current Studies of Electron Transport Across Metal/Metal Interfaces
We review what we have learned about the scattering of electrons by the
interfaces between two different metals (M1/M2) in the
current-perpendicular-to-plane (CPP) geometry. In this geometry, the intrinsic
quantity is the specific resistance, AR, the product of the area through which
the CPP current flows times the CPP resistance. We describe results for both
non-magnetic/non-magnetic (N1/N2) and ferromagnetic/non-magnetic (F/N) pairs.
We focus especially upon cases where M1/M2 are lattice matched (i.e., have the
same crystal structure and the same lattice parameters to within ~ 1%), because
in these cases no-free-parameter calculations of 2AR agree surprisingly well
with measured values. But we also list and briefly discuss cases where M1/M2
are not lattice matched, either having different crystal structures, or lattice
parameters that differ by several percent. The published calculations of 2AR in
these latter cases do not agree so well with measured values.Comment: 6 pages, 2 figures, 2 tables. In Press: Applied Surface Scienc
Current induced switching of magnetic domains to a perpendicular configuration
In a ferromagnet--normal-metal--ferromagnet trilayer, a current flowing
perpendicularly to the layers creates a torque on the magnetic moments of the
ferromagnets. When one of the contacts is superconducting, the torque not only
favors parallel or antiparallel alignment of the magnetic moments, as is the
case for two normal contacts, but can also favor a configuration where the two
moments are perpendicular. In addition, whereas the conductance for parallel
and antiparallel magnetic moments is the same, signalling the absence of giant
magnetoresistance in the usual sense, the conductance is greater in the
perpendicular configuration. Thus, a negative magnetoconductance is predicted,
in contrast with the usual giant magnetoresistance.Comment: 4 pages, 3 figures, major rewriting of the technical par
Current-Driven Magnetization Dynamics in Magnetic Multilayers
We develop a quantum analog of the classical spin-torque model for
current-driven magnetic dynamics. The current-driven magnetic excitation at
finite field becomes significantly incoherent. This excitation is described by
an effective magnetic temperature rather than a coherent precession as in the
spin-torque model. However, both the spin-torque and effective temperature
approximations give qualitatively similar switching diagrams in the
current-field coordinates, showing the need for detailed experiments to
establish the proper physical model for current-driven dynamics.Comment: 5 pages, 2 figure
Giant magnetothermopower of magnon-assisted transport in ferromagnetic tunnel junctions
We present a theoretical description of the thermopower due to
magnon-assisted tunneling in a mesoscopic tunnel junction between two
ferromagnetic metals. The thermopower is generated in the course of thermal
equilibration between two baths of magnons, mediated by electrons. For a
junction between two ferromagnets with antiparallel polarizations, the ability
of magnon-assisted tunneling to create thermopower depends on the
difference between the size of the majority and
minority band Fermi surfaces and it is proportional to a temperature dependent
factor where is the magnon Debye
energy. The latter factor reflects the fractional change in the net
magnetization of the reservoirs due to thermal magnons at temperature
(Bloch's law). In contrast, the contribution of magnon-assisted
tunneling to the thermopower of a junction with parallel polarizations is
negligible. As the relative polarizations of ferromagnetic layers can be
manipulated by an external magnetic field, a large difference results in a magnetothermopower effect. This
magnetothermopower effect becomes giant in the extreme case of a junction
between two half-metallic ferromagnets, .Comment: 9 pages, 4 eps figure
Particles-vortex interactions and flow visualization in He4
Recent experiments have demonstrated a remarkable progress in implementing
and use of the Particle Image Velocimetry (PIV) and particle tracking
techniques for the study of turbulence in He4. However, an interpretation of
the experimental data in the superfluid phase requires understanding how the
motion of tracer particles is affected by the two components, the viscous
normal fluid and the inviscid superfluid. Of a particular importance is the
problem of particle interactions with quantized vortex lines which may not only
strongly affect the particle motion, but, under certain conditions, may even
trap particles on quantized vortex cores. The article reviews recent
theoretical, numerical, and experimental results in this rapidly developing
area of research, putting critically together recent results, and solving
apparent inconsistencies. Also discussed is a closely related technique of
detection of quantized vortices negative ion bubbles in He4.Comment: To appear in the J Low Temperature Physic
Oscillatory interlayer exchange and magnetoresistance in Fe/Cu multilayers
We have studied the magnetic and magnetotransport properties of Fe/Cu mu1tilayers prepared by sputtering. We find oscillations of the inter1ayer coupling as a function of the Cu thickness with the same long period as in Co/Cu multilayers (around 12.5 Á). The most striking result is that the oscillations in Fe/Cu and Co/Cu have almost exactly opposite phases. A large magnetoresistance of the spin-valve type is observed in the half periods with antiferromagnetic interlayer exchange. However, the magnetoresistance in Fe/Cu is definitely smaller than in Co/Cu
- …