142 research outputs found

    Inhibition of O-GlcNAc transferase activates tumor-suppressor gene expression in tamoxifen-resistant breast cancer cells

    Get PDF
    In this study, we probed the importance of O-GlcNAc transferase (OGT) activity for the survival of tamoxifen-sensitive (TamS) and tamoxifen-resistant (TamR) breast cancer cells. Tamoxifen is an antagonist of estrogen receptor (ERa), a transcription factor expressed in over 50% of breast cancers. ERa-positive breast cancers are successfully treated with tamoxifen; however, a significant number of patients develop tamoxifen-resistant disease. We show that in vitro development of tamoxifenresistance is associated with increased sensitivity to the OGT small molecule inhibitor OSMI-1. Global transcriptome profiling revealed that TamS cells adapt to OSMI-1 treatment by increasing the expression of histone genes. This is known to mediate chromatin compaction. In contrast, TamR cells respond to OGT inhibition by activating the unfolded protein response and by significantly increasing ERRFI1 expression. ERRFI1 is an endogenous inhibitor of ERBB-signaling, which is a known driver of tamoxifen-resistance. We show that ERRFI1 is selectively downregulated in ERa-positive breast cancers and breast cancers driven by ERBB2. This likely occurs via promoter methylation. Finally, we show that increased ERRFI1 expression is associated with extended survival in patients with ERa-positive tumors (p = 9.2e-8). In summary, we show that tamoxifen-resistance is associated with sensitivity to OSMI-1, and propose that this is explained in part through an epigenetic activation of the tumor-suppressor ERRFI1 in response to OSMI-1 treatment.Peer reviewe

    Breast cancer patient-derived explant cultures recapitulate in vivo drug responses

    Get PDF
    Assessment of drug sensitivity in tumor tissue ex vivo may significantly contribute to functional diagnostics to guide personalized treatment of cancer. Tumor organoid- and explant-cultures have become attractive tools towards this goal, although culturing conditions for breast cancer (BC) tissue have been among the most challenging to develop. Validation of possibilities to detect concordant responses in individual tumors and their respective cultures ex vivo is still needed. Here we employed BC patient-derived xenografts (PDXs) with distinct drug sensitivity, to evaluate different conditions for tissue dissociation, culturing and monitoring of treatment efficacy ex vivo, aiming to recapitulate the in vivo drug responses. The common challenge of discriminating between tumor and normal cells in the cultured tissue was also addressed. Following conventional enzymatic dissociation of BC tissue, the tumor cells stayed within the non-disrupted tissue fragments, while the single cells represented mostly normal host cells. By culturing such fragments as explants, viable tumor tissue could be maintained and treated ex vivo, providing representative indications on efficacy of the tested treatment. Thus, drug sensitivity profiles, including acquired chemoresistance seen in the PDXs, were recapitulated in the respective explants. To detect the concordant responses, however, the effect monitoring had to be harmonized with the characteristics of the cultured tissue. In conclusion, we present the feasibility of BC explants ex vivo to capture differences in drug sensitivity of individual tumors. The established protocols will aid in setting up an analogous platform for BC patient biopsies with the aim to facilitate functional precision medicine

    Differential in vivo tumorigenicity of distinct subpopulations from a luminal-like breast cancer xenograft

    Get PDF
    Intratumor heterogeneity caused by genetic, phenotypic or functional differences between cancer cell subpopulations is a considerable clinical challenge. Understanding subpopulation dynamics is therefore central for both optimization of existing therapy and for development of new treatment. The aim of this study was to isolate subpopulations from a primary tumor and by comparing molecular characteristics of these subpopulations, find explanations to their differing tumorigenicity. Cell subpopulations from two patient derived in vivo models of primary breast cancer, ER+ and ER-, were identified. EpCAM+ cells from the ER+ model gave rise to tumors independently of stroma cell support. The tumorigenic fraction was further divided based on SSEA-4 and CD24 expression. Both markers were expressed in ER+ breast cancer biopsies. FAC-sorted cells based on EpCAM, SSEA-4 and CD24 expression were subsequently tested for differences in functionality by in vivo tumorigenicity assay. Three out of four subpopulations of cells were tumorigenic and showed variable ability to recapitulate the marker expression of the original tumor. Whole genome expression analysis of the sorted populations disclosed high similarity in the transcriptional profiles between the tumorigenic populations. Comparing the non-tumorigenic vs the tumorigenic populations, 44 transcripts were, however, significantly differentially expressed. A subset of these, 26 identified and named genes, highly expressed in the non-tumorigenic population, predicted longer overall survival (N = 737, p<0.0001) and distant metastasis free survival (DMFS) (N = 1379, p<0.0001) when performing Kaplan-Meier survival analysis using the GOBO online database. The 26 gene set correlated with longer DMFS in multiple breast cancer subgroups. Copy number profiling revealed no aberrations that could explain the observed differences in tumorigenicity. This study emphasizes the functional variability among cell populations that are otherwise genomically similar, and that the risk of breast cancer recurrence can only be eliminated if the tumorigenic abilities in multiple cancer cell subpopulations are inhibited

    Enhancing the efficacy of cytotoxic agents for cancer therapy using photochemical internalisation.

    Get PDF
    Photochemical internalisation (PCI) is a technique for improving cellular delivery of certain bioactive agents which are prone to sequestration within endolysosomes. There is a wide range of agents suitable for PCI-based delivery including toxins, oligonucleotides, genes and immunoconjugates which demonstrates the versatility of this technique. The basic mechanism of PCI involves triggering release of the agent from endolysosomes within the target cells using a photosensitiser which is selectively retained with the endolysosomal membranes. Excitation of the photosensitiser by visible light leads to disruption of the membranes via photooxidative damage thereby releasing the agent into the cytosol. This treatment enables the drugs to reach their intended subcellular target more efficiently and improves their efficacy. In this review we summarise the applications of this technique with the main emphasis placed on cancer chemotherapy

    Aldehyde Dehydrogenase (ALDH) Activity Does Not Select for Cells with Enhanced Aggressive Properties in Malignant Melanoma

    Get PDF
    Malignant melanoma is an exceptionally aggressive, drug-resistant and heterogeneous cancer. Recently it has been shown that melanoma cells with high clonogenic and tumourigenic abilities are common, but markers distinguishing such cells from cells lacking these abilities have not been identified. There is therefore no definite evidence that an exclusive cell subpopulation, i.e. cancer stem cells (CSC), exists in malignant melanoma. Rather, it is suggested that multiple cell populations are implicated in initiation and progression of the disease, making it of importance to identify subpopulations with elevated aggressive properties.. Furthermore, both subpopulations showed similar sensitivity to the anti-melanoma drugs, dacarbazine and lexatumumab.These findings suggest that ALDH does not distinguish tumour-initiating and/or therapy-resistant cells, implying that the ALDH phenotype is not associated with more-aggressive subpopulations in malignant melanoma, and arguing against ALDH as a “universal” marker. Besides, it was shown that the ability to reestablish tumour heterogeneity is not necessarily linked to the more aggressive phenotype

    Preclinical Efficacy of Cabazitaxel Loaded Poly (2-alkyl cyanoacrylate) Nanoparticle Variants

    Get PDF
    \ua9 2024 Valsalakumari et al. This work is published and licensed by Dove Medical Press Limited.Background: Biodegradable poly(alkyl cyanoacrylate) (PACA) nanoparticles (NPs) are receiving increasing attention in anti-cancer nanomedicine development not only for targeted cancer chemotherapy, but also for modulation of the tumor microenvironment. We previously reported promising results with cabazitaxel (CBZ) loaded poly(2-ethylbutyl cyanoacrylate) NPs (PEBCA-CBZ NPs) in a patient derived xenograft (PDX) model of triple-negative breast cancer, and this was associated with a decrease in M2 macrophages. The present study aims at comparing two endotoxin-free PACA NP variants (PEBCA and poly(2-ethylhexyl cyanoacrylate); PEHCA), loaded with CBZ and test whether conjugation with folate would improve their effect. Methods: Cytotoxicity assays and cellular uptake of NPs by flow cytometry were performed in different breast cancer cells. Biodistribution and efficacy studies were performed in PDX models of breast cancer. Tumor associated immune cells were analyzed by multiparametric flow cytometry. Results: In vitro studies showed similar NP-induced cytotoxicity patterns despite difference in early NP internalization. On intravenous injection, the liver cleared the majority of NPs. Efficacy studies in the HBCx39 PDX model demonstrated an enhanced effect of drug-loaded PEBCA variants compared with free drug and PEHCA NPs. Furthermore, the folate conjugated PEBCA variant did not show any enhanced effects compared with the unconjugated counterpart which might be due to unfavorable orientation of folate on the NPs. Finally, analyses of the immune cell populations in tumors revealed that treatment with drug loaded PEBCA variants affected the myeloid cells, especially macrophages, contributing to an inflammatory, immune activated tumor microenvironment. Conclusion: We report for the first time, comparative efficacy of PEBCA and PEHCA NP variants in triple negative breast cancer models and show that CBZ-loaded PEBCA NPs exhibit a combined effect on tumor cells and on the tumor associated myeloid compartment, which may boost the anti-tumor response

    Photochemical disruption of endocytic vesicles before delivery of drugs: a new strategy for cancer therapy

    Get PDF
    The development of methods for specific delivery of drugs is an important issue for many cancer therapy approaches. Most of macromolecular drugs are taken into the cell through endocytosis and, being unable to escape from endocytic vesicles, eventually are degraded there, which hinders their therapeutic usefulness. We have developed a method, called photochemical internalization, based on light-induced photochemical reactions, disrupting endocytic vesicles specifically within illuminated sites e.g. tumours. Here we present a new drug delivery concept based on photochemical internalization-principle – photochemical disruption of endocytic vesicles before delivery of macromolecules, leading to an instant endosomal release instead of detrimental stay of the molecules in endocytic vesicles. Previously we have shown that illumination applied after the treatment with macromolecules substantially improved their biological effect both in vitro and in vivo. Here we demonstrate that exposure to light before delivery of protein toxin gelonin improves gelonin effect in vitro much more than light after. However, in vitro transfection with reporter genes delivered by non-viral and adenoviral vectors is increased more than 10- and six-fold, respectively, by both photochemical internalization strategies. The possible cellular mechanisms involved, and the potential of this new method for practical application of photochemical internalization concept in cancer therapy are discussed

    Iterative sorting reveals CD133+ and CD133- melanoma cells as phenotypically distinct populations

    Get PDF
    Background: The heterogeneity and tumourigenicity of metastatic melanoma is attributed to a cancer stem cell model, with CD133 considered to be a cancer stem cell marker in melanoma as well as other tumours, but its role has remained controversial. Methods: We iteratively sorted CD133+ and CD133- cells from 3 metastatic melanoma cell lines, and observed tumourigenicity and phenotypic characteristics over 7 generations of serial xeno-transplantation in NOD/SCID mice. Results: We demonstrate that iterative sorting is required to make highly pure populations of CD133+ and CD133- cells from metastatic melanoma, and that these two populations have distinct characteristics not related to the cancer stem cell phenotype. In vitro, gene set enrichment analysis indicated CD133+ cells were related to a proliferative phenotype, whereas CD133- cells were of an invasive phenotype. However, in vivo, serial transplantation of CD133+ and CD133- tumours over 7 generations showed that both populations were equally able to initiate and propagate tumours. Despite this, both populations remained phenotypically distinct, with CD133- cells only able to express CD133 in vivo and not in vitro. Loss of CD133 from the surface of a CD133+ cell was observed in vitro and in vivo, however CD133- cells derived from CD133+ retained the CD133+ phenotype, even in the presence of signals from the tumour microenvironment. Conclusion: We show for the first time the necessity of iterative sorting to isolate pure marker-positive and marker-negative populations for comparative studies, and present evidence that despite CD133+ and CD133- cells being equally tumourigenic, they display distinct phenotypic differences, suggesting CD133 may define a distinct lineage in melanoma

    Enhanced photodynamic destruction of a transplantable fibrosarcoma using photochemical internalisation of gelonin

    Get PDF
    Photochemical internalisation (PCI) is a technique for releasing biologically active macromolecules from endocytic vesicles by light activation of a photosensitiser localised in the same vesicles of targeted cells. This study investigated the PCI of the toxin gelonin as a way of enhancing the effect of photodynamic therapy (PDT) on a human malignant fibrous histiocytoma transplanted into nude mice using the photosensitiser disulphonated aluminium phthalocyanine (AlPcS2a). Pharmacokinetic studies after intraperitoneal administration showed that the serum level of AlPcS2a fitted a biexponential model (half-lives of 1.8 and 26.7 h). The tumour concentration was roughly constant up to 48 h, although fluorescence microscopy showed that the drug location was initially mainly vascular, but became intracellular by 48 h. To compare PDT with PCI, 48 h after intraperitoneal injection of 10 mg kg−1 AlPcS2a, and 6 h after direct intratumour injection of 50 μg gelonin (PCI) or a similar volume of phosphate-buffered saline (PDT controls), tumour-bearing animals were exposed to red light (150 J cm−2). Complete response was observed for more than 100 days in 50% of the PCI tumours but only 10% of the PDT tumours (P<0.01). In tumours examined histologically 4 days after light delivery, the depth of necrosis was 3–4 mm after PDT, but 7 mm after PCI. The deeper effect after PCI demonstrates that the light fluence needed to kill tumour is less than with PDT. We conclude that PCI with gelonin can markedly enhance the effect of PDT on this type of tumour and may have a role clinically as an adjunct to surgery to control localised disease
    corecore