15 research outputs found

    THz conductivity of Sr1−x_{1-x}Cax_xRuO3_3

    Full text link
    We investigate the optical conductivity of Sr1−x_{1-x}Cax_xRuO3_3 across the ferromagnetic to paramagnetic transition that occurs at x=0.8x=0.8. The thin films were grown by metalorganic aerosol deposition with 0≤x≤10 \leq x \leq 1 onto NdGaO3_3 substrates. We performed THz frequency domain spectroscopy in a frequency range from 3~cm−1^{-1} to 40~cm−1^{-1} (100~GHz to 1.4~THz) and at temperatures ranging from 5~K to 300~K, measuring transmittivity and phase shift through the films. From this we obtained real and imaginary parts of the optical conductivity. The end-members, ferromagnetic SrRuO3_3 and paramagnetic CaRuO3_3, show a strongly frequency-dependent metallic response at temperatures below 20~K. Due to the high quality of these samples we can access pronounced intrinsic electronic contributions to the optical scattering rate, which at 1.4~THz exceeds the residual scattering rate by more than a factor of three. Deviations from a Drude response start at about 0.7~THz for both end-members in a remarkably similar way. For the intermediate members a higher residual scattering originating in the compositional disorder leads to a featureless optical response, instead. The relevance of low-lying interband transitions is addressed by a calculation of the optical conductivity within density functional theory in the local density approximation (LDA)

    Immunological fingerprint in coronavirus disease-19 convalescents with and without post-COVID syndrome

    Get PDF
    BackgroundSymptoms lasting longer than 12  weeks after severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection are called post-coronavirus disease (COVID) syndrome (PCS). The identification of new biomarkers that predict the occurrence or course of PCS in terms of a post-viral syndrome is vital. T-cell dysfunction, cytokine imbalance, and impaired autoimmunity have been reported in PCS. Nevertheless, there is still a lack of conclusive information on the underlying mechanisms due to, among other things, a lack of controlled study designs.MethodsHere, we conducted a prospective, controlled study to characterize the humoral and cellular immune response in unvaccinated patients with and without PCS following SARS-CoV-2 infection over 7 months and unexposed donors.ResultsPatients with PCS showed as early as 6 weeks and 7 months after symptom onset significantly increased frequencies of SARS-CoV-2-specific CD4+ and CD8+ T-cells secreting IFNγ, TNF, and expressing CD40L, as well as plasmacytoid dendritic cells (pDC) with an activated phenotype. Remarkably, the immunosuppressive counterparts type 1 regulatory T-cells (TR1: CD49b/LAG-3+) and IL-4 were more abundant in PCS+.ConclusionThis work describes immunological alterations between inflammation and immunosuppression in COVID-19 convalescents with and without PCS, which may provide potential directions for future epidemiological investigations and targeted treatments

    Calculation of Absolute Molecular Entropies and Heat Capacities Made Simple

    No full text
    We propose a fully automated composite scheme for the calculation of molecular entropies efficiently, accurately and numerically stable by a combination of DFT, semiempirical quantum chemical (SQM) and force-field (FF) levels. A modified rigid-rotor-harmonic-oscillator (msRRHO) approximation and the Gibbs-Shannon formula for extensive conformer ensembles (CEs) are applied and efficiently account for effects of anharmonicity. CEs of systematically increasing quality are generated by a modified metadynamics search algorithm and extrapolated to completeness. Variations of the ro-vibrational entropy over the CE are accounted for by a Boltzmann population average for the first time consistently. The proposed procedure was extensively tested with two standard DFT methods (B97-3c and B3LYP) and at GFN-SQM/FF levels for the conformation term in comparison with experimental gas phase entropies and heat capacities. Excellent performance is observed with mean deviations 14H30-C16H34),unprecedentedly small errors of about 3 cal/mol K are obtained. For 25 typical drug molecules, the conformational entropy depends weakly to strongly on the underlying theory level revealing the complex potential energy surfaces as main source of error. The approach is systematically expandable and moreover can be applied straightforward together with continuum solvation models.<br /

    A Robust Non-Self-Consistent Tight-Binding Quantum Chemistry Method for large Molecules

    No full text
    We propose a semiempirical quantum chemical method, designed for the fast calculation of molecular Geometries, vibrational Frequencies and Non-covalent interaction energies (GFN) of systems with up to a few thousand atoms. Like its predecessors GFN-xTB and GFN2-xTB, the new method termed GFN0-xTB is parameterized for all elements up to radon (Z = 86) and mostly shares well-known density functional tight-binding approximations as well as basis set and integral approximations. The main new feature is the avoidance of the self-consistent charge iterations leading to speed-ups of a factor of 2-20 depending on the size and electronic complexity of the system. This is achieved by including only quantum mechanical contributions up to first-order which are incorporated similar to the previous versions without any pair-specific parameterization. The essential electrostatic electronic interaction is treated by a classical electronegativity equilibration charge model yielding atomic partial charges that enter the electronic Hamiltonian indirectly. Furthermore, the atomic charge-dependent D4 dispersion correction is included to account for long range London correlation effects. Formulas for analytical total energy gradients with respect to nuclear displacements are derived and implemented in the xtb code allowing numerically very precise structure optimizations. The neglect of self-consistent energy terms not only leads to a large gain in computational speed but also can increase robustness in electronically difficult situations because ill-convergence or artificial charge-transfer (CT) is avoided. The comparison of GFN0-xTB and GFN/GFN2-xTB allows dissection of quantum electronic polarization and CT effects thereby improving our understanding of chemical bonding. Compared to the most sophisticated multipole-based GFN2-xTB model (which approaches DFT accuracy for the target properties closely), GFN0-xTB performs slightly worse for non-covalent interactions and molecular structures, while very good results are observed for conformational energies. Vibrational frequencies are obtained less accurately than with GFN/GFN2-xTB but they may still be useful for various purposes like estimating relative thermostatistical reaction energies. Most exceptional is the fact that even relatively complicated transition metal complex structures can be accurately optimized with a non-self-consistent quantum approach. The new method bridges the gap between force-fields and traditional semiempirical methods with its excellent computational cost to accuracy ratio and is intended to explore the chemical space of large molecular systems and solids.<br /

    High accuracy quantum-chemistry-based calculation and blind prediction of macroscopic pKa values in the context of the SAMPL6 challenge

    No full text
    Recent advances in the development of low-cost quantum chemical methods have made the prediction of conformational preferences and physicochemical properties of medium-sized drug-like molecules routinely feasible, with significant potential to advance drug discovery. In the context of the SAMPL6 challenge, macroscopic pKa values were blindly predicted for a set of 24 of such molecules. In this paper we present two similar quantum chemical based approaches based on the high accuracy calculation of standard reaction free energies and the subsequent determination of those pKa values via a linear free energy relationship. Both approaches use extensive conformational sampling and apply hybrid and double-hybrid density functional theory with continuum solvation to calculate free energies. The blindly calculated macroscopic pKa values were in excellent agreement with the experiment

    SAR and scan-time optimized 3D whole-brain double inversion recovery imaging at 7T

    Get PDF
    Purpose The aim of this project was to implement an ultra-high field (UHF) optimized double inversion recovery (DIR) sequence for gray matter (GM) imaging, enabling whole brain coverage in short acquisition times ( math formula5 min, image resolution 1 mm3). Methods A 3D variable flip angle DIR turbo spin echo (TSE) sequence was optimized for UHF application. We implemented an improved, fast, and specific absorption rate (SAR) efficient TSE imaging module, utilizing improved reordering. The DIR preparation was tailored to UHF application. Additionally, fat artifacts were minimized by employing water excitation instead of fat saturation. Results GM images, covering the whole brain, were acquired in 7 min scan time at 1 mm isotropic resolution. SAR issues were overcome by using a dedicated flip angle calculation considering SAR and SNR efficiency. Furthermore, UHF related artifacts were minimized. Conclusion The suggested sequence is suitable to generate GM images with whole-brain coverage at UHF. Due to the short total acquisition times and overall robustness, this approach can potentially enable DIR application in a routine setting and enhance lesion detection in neurological diseases
    corecore