32 research outputs found

    Tre1 GPCR initiates germ cell transepithelial migration by regulating Drosophila melanogaster E-cadherin

    Get PDF
    Despite significant progress in identifying the guidance pathways that control cell migration, how a cell starts to move within an intact organism, acquires motility, and loses contact with its neighbors is poorly understood. We show that activation of the G protein–coupled receptor (GPCR) trapped in endoderm 1 (Tre1) directs the redistribution of the G protein Gβ as well as adherens junction proteins and Rho guanosine triphosphatase from the cell periphery to the lagging tail of germ cells at the onset of Drosophila melanogaster germ cell migration. Subsequently, Tre1 activity triggers germ cell dispersal and orients them toward the midgut for directed transepithelial migration. A transition toward invasive migration is also a prerequisite for metastasis formation, which often correlates with down-regulation of adhesion proteins. We show that uniform down-regulation of E-cadherin causes germ cell dispersal but is not sufficient for transepithelial migration in the absence of Tre1. Our findings therefore suggest a new mechanism for GPCR function that links cell polarity, modulation of cell adhesion, and invasion

    Transcriptional regulation of Drosophila gonad formation

    Get PDF
    The formation of the Drosophila embryonic gonad, involving the fusion of clusters of somatic gonadal precursor cells (SGPs) and their ensheathment of germ cells, provides a simple and genetically tractable model for the interplay between cells during organ formation. In a screen for mutants affecting gonad formation we identified a SGP cell autonomous role for Midline (Mid) and Longitudinals lacking (Lola). These transcriptional factors are required for multiple aspects of SGP behaviour including SGP cluster fusion, germ cell ensheathment and gonad compaction. The lola locus encodes more than 25 differentially spliced isoforms and we have identified an isoform specific requirement for lola in the gonad which is distinct from that in nervous system development. Mid and Lola work in parallel in gonad formation and surprisingly Mid overexpression in a lola background leads to additional SGPs at the expense of fat body cells. Our findings support the idea that although the transcription factors required by SGPs can ostensibly be assigned to those being required for either SGP specification or behaviour, they can also interact to impinge on both processes

    Stimulus-specific hypothalamic encoding of a persistent defensive state

    Get PDF
    Persistent neural activity in cortical, hippocampal, and motor networks has been described as mediating working memory for transiently encountered stimuli. Internal emotional states, such as fear, also persist following exposure to an inciting stimulus, but it is unclear whether slow neural dynamics are involved in this process. Neurons in the dorsomedial and central subdivisions of the ventromedial hypothalamus (VMHdm/c) that express the nuclear receptor protein NR5A1 (also known as SF1) are necessary for defensive responses to predators in mice. Optogenetic activation of these neurons, referred to here as VMHdm^(SF1) neurons, elicits defensive behaviours that outlast stimulation, which suggests the induction of a persistent internal state of fear or anxiety. Here we show that in response to naturalistic threatening stimuli, VMHdm^(SF1) neurons in mice exhibit activity that lasts for many tens of seconds. This persistent activity was correlated with, and required for, persistent defensive behaviour in an open-field assay, and depended on neurotransmitter release from VMHdm^(SF1) neurons. Stimulation and calcium imaging in acute slices showed that there is local excitatory connectivity between VMHdm^(SF1) neurons. Microendoscopic calcium imaging of VMHdm^(SF1) neurons revealed that persistent activity at the population level reflects heterogeneous dynamics among individual cells. Unexpectedly, distinct but overlapping VMHdm^(SF1) subpopulations were persistently activated by different modalities of threatening stimulus. Computational modelling suggests that neither recurrent excitation nor slow-acting neuromodulators alone can account for persistent activity that maintains stimulus identity. Our results show that stimulus-specific slow neural dynamics in the hypothalamus, on a time scale orders of magnitude longer than that of working memory in the cortex, contribute to a persistent emotional state

    Ventromedial hypothalamic neurons control a defensive emotion state

    Get PDF
    Defensive behaviors reflect underlying emotion states, such as fear. The hypothalamus plays a role in such behaviors, but prevailing textbook views depict it as an effector of upstream emotion centers, such as the amygdala, rather than as an emotion center itself. We used optogenetic manipulations to probe the function of a specific hypothalamic cell type that mediates innate defensive responses. These neurons are sufficient to drive multiple defensive actions, and required for defensive behaviors in diverse contexts. The behavioral consequences of activating these neurons, moreover, exhibit properties characteristic of emotion states in general, including scalability, (negative) valence, generalization and persistence. Importantly, these neurons can also condition learned defensive behavior, further refuting long-standing claims that the hypothalamus is unable to support emotional learning and therefore is not an emotion center. These data indicate that the hypothalamus plays an integral role to instantiate emotion states, and is not simply a passive effector of upstream emotion centers

    Stimulus-specific hypothalamic encoding of a persistent defensive state

    Get PDF
    Persistent neural activity in cortical, hippocampal, and motor networks has been described as mediating working memory for transiently encountered stimuli. Internal emotional states, such as fear, also persist following exposure to an inciting stimulus, but it is unclear whether slow neural dynamics are involved in this process. Neurons in the dorsomedial and central subdivisions of the ventromedial hypothalamus (VMHdm/c) that express the nuclear receptor protein NR5A1 (also known as SF1) are necessary for defensive responses to predators in mice. Optogenetic activation of these neurons, referred to here as VMHdm^(SF1) neurons, elicits defensive behaviours that outlast stimulation, which suggests the induction of a persistent internal state of fear or anxiety. Here we show that in response to naturalistic threatening stimuli, VMHdm^(SF1) neurons in mice exhibit activity that lasts for many tens of seconds. This persistent activity was correlated with, and required for, persistent defensive behaviour in an open-field assay, and depended on neurotransmitter release from VMHdm^(SF1) neurons. Stimulation and calcium imaging in acute slices showed that there is local excitatory connectivity between VMHdm^(SF1) neurons. Microendoscopic calcium imaging of VMHdm^(SF1) neurons revealed that persistent activity at the population level reflects heterogeneous dynamics among individual cells. Unexpectedly, distinct but overlapping VMHdm^(SF1) subpopulations were persistently activated by different modalities of threatening stimulus. Computational modelling suggests that neither recurrent excitation nor slow-acting neuromodulators alone can account for persistent activity that maintains stimulus identity. Our results show that stimulus-specific slow neural dynamics in the hypothalamus, on a time scale orders of magnitude longer than that of working memory in the cortex, contribute to a persistent emotional state

    Genetic dissection of an amygdala microcircuit that gates conditioned fear

    Get PDF
    The role of different amygdala nuclei (neuroanatomical subdivisions) in processing Pavlovian conditioned fear has been studied extensively, but the function of the heterogeneous neuronal subtypes within these nuclei remains poorly understood. Here we use molecular genetic approaches to map the functional connectivity of a subpopulation of GABA-containing neurons, located in the lateral subdivision of the central amygdala (CEl), which express protein kinase C-δ (PKC-δ). Channelrhodopsin-2-assisted circuit mapping in amygdala slices and cell-specific viral tracing indicate that PKC-δ^+ neurons inhibit output neurons in the medial central amygdala (CEm), and also make reciprocal inhibitory synapses with PKC-δ^− neurons in CEl. Electrical silencing of PKC-δ^+ neurons in vivo suggests that they correspond to physiologically identified units that are inhibited by the conditioned stimulus, called Cel_(off) units. This correspondence, together with behavioural data, defines an inhibitory microcircuit in CEl that gates CEm output to control the level of conditioned freezing

    Mixer/Bon and FoxH1/Sur have overlapping and divergent roles in Nodal signaling and mesendoderm induction

    No full text
    Transcription factors belonging to the FoxH1 and Mixer families are required for facets of Nodal signaling during vertebrate mesendoderm induction. Here, we analyze whether zebrafish proteins related to FoxH1 [Schmalspur (Sur)] and Mixer [Bonnie and clyde (Bon)] act within or downstream of the Nodal signaling pathway, test whether these two factors have additive or overlapping activities, and determine whether FoxH1/Sur and Mixer/Bon can account for all Nodal signaling during embryogenesis. We find that sur expression is independent of Nodal signaling and that bon is expressed in the absence of Nodal signaling but requires Nodal signaling and Sur for enhanced, maintained expression. These results and the association of FoxH1 and Mixer/Bon with phosphorylated Smad2 support a role for these factors as components of the Nodal signaling pathway. In contrast to the relatively mild defects observed in single mutants, loss of both bon and sur results in a severe phenotype characterized by absence of prechordal plate, cardiac mesoderm, endoderm and ventral neuroectoderm. Analysis of Nodal-regulated proteins reveals that Bon and Sur have both distinct and overlapping regulatory roles. Some genes are regulated by both Bon and Sur, and others by either Bon or Sur. Complete loss of Nodal signaling results in a more severe phenotype than loss of both Bon and Sur, indicating that additional Smad-associated transcription factors remain to be identified that act as components of the Nodal signaling pathway
    corecore