343 research outputs found
Kepler Cycle 1 Observations of Low Mass Stars: New Eclipsing Binaries, Single Star Rotation Rates, and the Nature and Frequency of Starspots
We have analyzed Kepler light curves for 849 stars with T_eff < 5200 K from
our Cycle 1 Guest Observer program. We identify six new eclipsing binaries, one
of which has an orbital period of 29.91 d, and two of which are probably W UMa
variables. In addition, we identify a candidate "warm Jupiter" exoplanet. We
further examine a subset of 670 sources for variability. Of these objects, 265
stars clearly show periodic variability that we assign to rotation of the
low-mass star. At the photometric precision level provided by Kepler, 251 of
our objects showed no evidence for variability. We were unable to determine
periods for 154 variable objects. We find that 79% of stars with T_eff < 5200 K
are variable. The rotation periods we derive for the periodic variables span
the range 0.31 < P_rot < 126.5 d. A considerable number of stars with rotation
periods similar to the solar value show activity levels that are 100 times
higher than the Sun. This is consistent with results for solar-like field
stars. As has been found in previous studies, stars with shorter rotation
periods generally exhibit larger modulations. This trend flattens beyond P_rot
= 25 d, demonstrating that even long period binaries may still have components
with high levels of activity and investigating whether the masses and radii of
the stellar components in these systems are consistent with stellar models
could remain problematic. Surprisingly, our modeling of the light curves
suggests that the active regions on these cool stars are either preferentially
located near the rotational poles, or that there are two spot groups located at
lower latitudes, but in opposing hemispheres.Comment: 48 pages, 11 figure
Physics Of Eclipsing Binaries. II. Towards the Increased Model Fidelity
The precision of photometric and spectroscopic observations has been
systematically improved in the last decade, mostly thanks to space-borne
photometric missions and ground-based spectrographs dedicated to finding
exoplanets. The field of eclipsing binary stars strongly benefited from this
development. Eclipsing binaries serve as critical tools for determining
fundamental stellar properties (masses, radii, temperatures and luminosities),
yet the models are not capable of reproducing observed data well either because
of the missing physics or because of insufficient precision. This led to a
predicament where radiative and dynamical effects, insofar buried in noise,
started showing up routinely in the data, but were not accounted for in the
models. PHOEBE (PHysics Of Eclipsing BinariEs; http://phoebe-project.org) is an
open source modeling code for computing theoretical light and radial velocity
curves that addresses both problems by incorporating missing physics and by
increasing the computational fidelity. In particular, we discuss triangulation
as a superior surface discretization algorithm, meshing of rotating single
stars, light time travel effect, advanced phase computation, volume
conservation in eccentric orbits, and improved computation of local intensity
across the stellar surfaces that includes photon-weighted mode, enhanced limb
darkening treatment, better reflection treatment and Doppler boosting. Here we
present the concepts on which PHOEBE is built on and proofs of concept that
demonstrate the increased model fidelity.Comment: 60 pages, 15 figures, published in ApJS; accompanied by the release
of PHOEBE 2.0 on http://phoebe-project.or
Site-selective quantum correlations revealed by magnetic anisotropy in the tetramer system SeCuO3
We present the investigation of a monoclinic compound SeCuO3 using x-ray
powder diffraction, magnetization, torque and electron-spin-resonance (ESR).
Structurally based analysis suggests that SeCuO3 can be considered as a 3D
network of tetramers. The values of intra-tetramer exchange interactions are
extracted from the temperature dependence of the susceptibility and amount to
~200 K. The inter-tetramer coupling leads to the development of long-range
antiferromagnetic order at TN = 8 K. An unusual temperature dependence of the
effective g-tensors is observed, accompanied with a rotation of macroscopic
magnetic axes. We explain this unique observation as due to site-selective
quantum correlations
Impact of Rubin Observatory LSST Template Acquisition Strategies on Early Science from the Transients and Variable Stars Science Collaboration: Non-time-critical Science Cases
Vera C. Rubin Observatory Legacy Survey of Space and Time, LSST, will revolutionize modern astronomy by producing an extremely deep (coadded depth ~27 mag) depth-limited survey of the entire southern sky (LSST Science Collaboration et al. 2009). The 8.4 m large-aperture, wide-field telescope, which is based in Cerro Pachón, will image the entire Southern sky every three nights in multiple bands (SDSS-u, g, r, i, z, y) and produce a fire-hose of data, 20 Tb each night, concluding in a 60 petabyte data set as the legacy of the 10 yr survey.
Extracting meaningful light curves from variable objects requires difference imaging to both identify variability and calibrate light curve data products. Templates, co-added groups of visits that act as an image of the "static" sky, are a key component of Difference Imaging Analysis (DIA) and as such are of paramount importance for all science that involves variable objects. As the "non-time-critical" science cases discussed here are mostly periodic, they generally do not depend upon the survey alert stream; however, templates are still crucial for performing science and calibrations during the first year. We provide recommendations for observing strategies for template acquisition starting from commissioning and through Year 1 of the survey
Low-Mass Eclipsing Binaries in the Initial Kepler Data Release
We identify 231 objects in the newly released Cycle 0 dataset from the Kepler
Mission as double-eclipse, detached eclipsing binary systems with Teff < 5500 K
and orbital periods shorter than ~32 days. We model each light curve using the
JKTEBOP code with a genetic algorithm to obtain precise values for each system.
We identify 95 new systems with both components below 1.0 M_sun and eclipses of
at least 0.1 magnitudes, suitable for ground-based follow-up. Of these, 14 have
periods less than 1.0 day, 52 have periods between 1.0 and 10.0 days, and 29
have periods greater than 10.0 days. This new sample of main-sequence,
low-mass, double-eclipse, detached eclipsing binary candidates more than
doubles the number of previously known systems, and extends the sample into the
completely heretofore unexplored P > 10.0 day period regime. We find
preliminary evidence from these systems that the radii of low-mass stars in
binary systems decrease with period. This supports the theory that binary
spin-up is the primary cause of inflated radii in low-mass binary systems,
although a full analysis of each system with radial-velocity and multi-color
light curves is needed to fully explore this hypothesis. As well, we present 7
new transiting planet candidates that do not appear among the recently released
list of 706 candidates by the Kepler team, nor in the Kepler False Positive
Catalog, along with several other new and interesting systems. We also present
novel techniques for the identification, period analysis, and modeling of
eclipsing binaries.Comment: 22 pages in emulateapj format. 9 figures, 4 tables, 2 appendices.
Accepted to AJ. Includes a significant addition of new material since last
arXiv submission and an updated method for estimating masses and radi
KOI 1224, a Fourth Bloated Hot White Dwarf Companion Found With Kepler
We present an analysis and interpretation of the Kepler binary system KOI
1224. This is the fourth binary found with Kepler that consists of a thermally
bloated, hot white dwarf in a close orbit with a more or less normal star of
spectral class A or F. As we show, KOI 1224 contains a white dwarf with Teff =
14400 +/- 1100 K, mass = 0.20 +/- 0.02 Msun, and radius = 0.103 +/- 0.004 Rsun,
and an F-star companion of mass = 1.59 +/- 0.07 Msun that is somewhat beyond
its terminal-age main sequence. The orbital period is quite short at 2.69802
days. The ingredients that are used in the analysis are the Kepler binary light
curve, including the detection of the Doppler boosting effect; the NUV and FUV
fluxes from the Galex images of this object; an estimate of the spectral type
of the F-star companion; and evolutionary models of the companion designed to
match its effective temperature and mean density. The light curve is modelled
with a new code named Icarus which we describe in detail. Its features include
the full treatment of orbital phase-resolved spectroscopy, Doppler boosting,
irradiation effects and transits/eclipses, which are particularly suited to
irradiated eclipsing binaries. We interpret the KOI 1224 system in terms of its
likely evolutionary history. We infer that this type of system, containing a
bloated hot white dwarf, is the direct descendant of an Algol-type binary. In
spite of this basic understanding of the origin of KOI 1224, we discuss a
number of problems associated with producing this type of system with this
short of an short orbital period.Comment: 14 pages, 8 figures, 2 tables, submitted to Ap
V2368 Oph: An eclipsing and double-lined spectroscopic binary used as a photometric comparison star for U Oph
The A-type star HR 6412 = V2368 Oph was used by several investigators as a
photometric comparison star for the known eclipsing binary U Oph but was found
to be variable by three independent groups, including us. By analysing series
of new spectral and photometric observations and a critical compilation of
available radial velocities, we were able to find the correct period of light
and radial-velocity variations and demonstrate that the object is an eclipsing
and double-lined spectroscopic binary moving in a highly eccentric orbit. We
derived a linear ephemeris T min.I = HJD (2454294.67 +/- 0.01) + (38.32712 +/-
0.00004)d x E and estimated preliminary basic physical properties of the
binary. The dereddened UBV magnitudes and effective temperatures of the primary
and secondary, based on our light- and velocity-curve solutions, led to
distance estimates that agree with the Hipparcos distance within the errors. We
find that the mass ratio must be close to one, but the limited number and
wavelength range of our current spectra does not allow a truly precise
determination of the binary masses. Nevertheless, our results show convincingly
that both binary components are evolved away from the main sequence, which
makes this system astrophysically very important. There are only a few
similarly evolved A-type stars among known eclipsing binaries. Future
systematic observations and careful analyses can provide very stringent tests
for the stellar evolutionary theory.Comment: 10 pages, 7 figs, in press 2011 A&
- …