34 research outputs found

    Absence of neuronal autoantibodies in neuropsychiatric systemic lupus erythematosus

    Get PDF
    International audienceThis study aimed to characterise both neuronal autoantibodies and levels of interferon α, two proposed causative agents in neuropsychiatric systemic lupus erythematosus (NPSLE). Cerebrospinal fluid (CSF) and plasma from 35 patients with systemic lupus erythematosus (SLE; 15 with NPSLE) showed no antibodies against natively expressed N-methyl-D-aspartate receptors (NMDARs), or the surface of live hippocampal neurons. By comparison to controls (n = 104), patients with SLE had antibodies that bound to a peptide representing the extracellular domain of NMDARs (p < 0.0001), however, binding was retained against both rearranged peptides and no peptide (r = 0.85 and r = 0.79, respectively, p < 0.0001). In summary, neuronal-surface reactive antibodies were not detected in NPSLE. Further, while interferon α levels were higher in SLE (p < 0.0001), they lacked specificity for NPSLE. Our findings mandate a search for novel biomarkers in this condition. ANN NEUROL 2020

    Severe Neuro-COVID is associated with peripheral immune signatures, autoimmunity and neurodegeneration: a prospective cross-sectional study

    Full text link
    Growing evidence links COVID-19 with acute and long-term neurological dysfunction. However, the pathophysiological mechanisms resulting in central nervous system involvement remain unclear, posing both diagnostic and therapeutic challenges. Here we show outcomes of a cross-sectional clinical study (NCT04472013) including clinical and imaging data and corresponding multidimensional characterization of immune mediators in the cerebrospinal fluid (CSF) and plasma of patients belonging to different Neuro-COVID severity classes. The most prominent signs of severe Neuro-COVID are blood-brain barrier (BBB) impairment, elevated microglia activation markers and a polyclonal B cell response targeting self-antigens and non-self-antigens. COVID-19 patients show decreased regional brain volumes associating with specific CSF parameters, however, COVID-19 patients characterized by plasma cytokine storm are presenting with a non-inflammatory CSF profile. Post-acute COVID-19 syndrome strongly associates with a distinctive set of CSF and plasma mediators. Collectively, we identify several potentially actionable targets to prevent or intervene with the neurological consequences of SARS-CoV-2 infection

    Choroid plexus volume in multiple sclerosis vs neuromyelitis optica spectrum disorder: a retrospective, cross-sectional analysis

    Get PDF
    BACKGROUND AND OBJECTIVES: The choroid plexus has been shown to play a crucial role in CNS inflammation. Previous studies found larger choroid plexus in multiple sclerosis (MS) compared with healthy controls. However, it is not clear whether the choroid plexus is similarly involved in MS and in neuromyelitis optica spectrum disorder (NMOSD). Thus, the aim of this study was to compare the choroid plexus volume in MS and NMOSD. METHODS: In this retrospective, cross-sectional study, patients were included by convenience sampling from 4 international MS centers. The choroid plexus of the lateral ventricles was segmented fully automatically on T1-weighted MRI sequences using a deep learning algorithm (Multi-Dimensional Gated Recurrent Units). Uni- and multivariable linear models were applied to investigate associations between the choroid plexus volume, clinically meaningful disease characteristics, and MRI parameters. RESULTS: We studied 180 patients with MS and 98 patients with NMOSD. In total, 94 healthy individuals and 47 patients with migraine served as controls. The choroid plexus volume was larger in MS (median 1,690 ”L, interquartile range [IQR] 648 ”L) than in NMOSD (median 1,403 ”L, IQR 510 ”L), healthy individuals (median 1,533 ”L, IQR 570 ”L), and patients with migraine (median 1,404 ”L, IQR 524 ”L; all p < 0.001), whereas there was no difference between NMOSD, migraine, and healthy controls. This was also true when adjusted for age, sex, and the intracranial volume. In contrast to NMOSD, the choroid plexus volume in MS was associated with the number of T2-weighted lesions in a linear model adjusted for age, sex, total intracranial volume, disease duration, relapses in the year before MRI, disease course, Expanded Disability Status Scale score, disease-modifying treatment, and treatment duration (beta 4.4; 95% CI 0.78-8.1; p = 0.018). DISCUSSION: This study supports an involvement of the choroid plexus in MS in contrast to NMOSD and provides clues to better understand the respective pathogenesis

    Immunoglobulin A antibodies against myelin oligodendrocyte glycoprotein in a subgroup of patients with central nervous system demyelination

    Get PDF
    IMPORTANCE: Differential diagnosis of patients with seronegative demyelinating central nervous system (CNS) disease is challenging. In this regard, evidence suggests that immunoglobulin (Ig) A plays a role in the pathogenesis of different autoimmune diseases. Yet little is known about the presence and clinical relevance of IgA antibodies against myelin oligodendrocyte glycoprotein (MOG) in CNS demyelination. OBJECTIVE: To investigate the frequency of MOG-IgA and associated clinical features in patients with demyelinating CNS disease and healthy controls. DESIGN, SETTING, AND PARTICIPANTS: This longitudinal study comprised 1 discovery and 1 confirmation cohort derived from 5 centers. Participants included patients with suspected or confirmed demyelinating diseases and healthy controls. MOG-IgA, MOG-IgG, and MOG-IgM were measured in serum samples and cerebrospinal fluid (CSF) of patients, who were assessed from September 2012 to April 2022. MAIN OUTCOMES AND MEASURES: Frequency and clinical features of patients who were seropositive for MOG-IgA and double-seronegative for aquaporin 4 (AQP4) IgG and MOG-IgG. RESULTS: After the exclusion of 5 participants with coexisting AQP4-IgG and MOG-IgA, MOG-IgG, and/or MOG-IgM, 1339 patients and 110 healthy controls were included; the median follow-up time was 39 months (range, 0-227 months). Of included patients with isolated MOG-IgA, 11 of 18 were female (61%), and the median age was 31.5 years (range, 3-76 years). Among patients double-seronegative for AQP4-IgG and MOG-IgG (1126/1339; 84%), isolated MOG-IgA was identified in 3 of 50 patients (6%) with neuromyelitis optica spectrum disorder, 5 of 228 patients (2%) with other CNS demyelinating diseases, and 10 of 848 patients (1%) with multiple sclerosis but in none of the healthy controls (0/110). The most common disease manifestation in patients seropositive for isolated MOG-IgA was myelitis (11/17 [65%]), followed by more frequent brainstem syndrome (7/16 [44%] vs 14/75 [19%], respectively; P = .048), and infrequent manifestation of optic neuritis (4/15 [27%] vs 46/73 [63%], respectively; P = .02) vs patients with MOG-IgG. Among patients fulfilling 2017 McDonald criteria for multiple sclerosis, MOG-IgA was associated with less frequent CSF-specific oligoclonal bands (4/9 [44%] vs 325/351 [93%], respectively; P < .001) vs patients with multiple sclerosis who were MOG-IgG/IgA seronegative. Further, most patients with isolated MOG-IgA presented clinical attacks after recent infection or vaccination (7/11 [64%]). CONCLUSION AND RELEVANCE: In this study, MOG-specific IgA was identified in a subgroup of patients who were double-seronegative for AQP4-/MOG-IgG, suggesting that MOG-IgA may be a novel diagnostic biomarker for patients with CNS demyelination

    Multiple Sclerosis-Associated Changes in the Composition and Immune Functions of Spore-Forming Bacteria

    Get PDF
    To address the impact of microbiome on disease development, it is essential to go beyond a descriptive study and evaluate the physiological importance of microbiome changes. Our study integrates computational analysis with in vitro and in vivo exploration of inflammatory properties of spore-forming microbial communities, revealing novel functional correlations. We specifically show that while small differences exist between the microbiomes of MS patients and healthy subjects, these differences are exacerbated in the chloroform-resistant fraction. We further demonstrate that, when purified from MS patients, this fraction is correlated with impaired immunomodulatory responses in vitro.Multiple sclerosis (MS) is an autoimmune disease of the central nervous system characterized by adaptive and innate immune system dysregulation. Recent work has revealed moderate alteration of gut microbial communities in subjects with MS and in experimental, induced models. However, a mechanistic understanding linking the observed changes in the microbiota and the presence of the disease is still missing. Chloroform-resistant, spore-forming bacteria, which primarily belong to the classes Bacilli and Clostridia in the phylum Firmicutes, have been shown to exhibit immunomodulatory properties in vitro and in vivo, but they have not yet been characterized in the context of human disease. This study addresses the community composition and immune function of this bacterial fraction in MS. We identify MS-associated spore-forming taxa (primarily in the class Clostridia) and show that their presence correlates with impaired differentiation of IL-10-secreting, regulatory T lymphocytes in vitro. Colonization of antibiotic-treated mice with spore-forming bacteria allowed us to identify some bacterial taxa favoring IL-10+ lymphocyte differentiation and others inducing differentiation of proinflammatory, IFN-Îł+ T lymphocytes. However, when fed into antibiotic-treated mice, both MS and control-derived spore-forming bacteria were able to induce similar IL-10-expressing Treg immunoregulatory responses, thus ameliorating symptoms of experimental allergic encephalomyelitis (EAE). Our analysis also identified Akkermansia muciniphila as a key organism that may interact either directly or indirectly with spore-forming bacteria to exacerbate the inflammatory effects of MS-associated gut microbiota. Thus, changes in the spore-forming fraction may influence T lymphocyte-mediated inflammation in MS. This experimental approach of isolating a subset of microbiota based on its functional characteristics may be useful to investigate other microbial fractions at greater depth
    corecore