136 research outputs found
Seismic Response of a Platform-Frame System with Steel Columns
Timber platform-frame shear walls are characterized by high ductility and diffuse energy dissipation but limited in-plane shear resistance. A novel lightweight constructive system composed of steel columns braced with oriented strand board (OSB) panels was conceived and tested. Preliminary laboratory tests were performed to study the OSB-to-column connections with self-drilling screws. Then, the seismic response of a shear wall was determined performing a quasi-static cyclic-loading test of a full-scale specimen. Results presented in this work in terms of force-displacement capacity show that this system confers to shear walls high in-plane strength and stiffness with good ductility and dissipative capacity. Therefore, the incorporation of steel columns within OSB bracing panels results in a strong and stiff platform-frame system with high potential for low- and medium-rise buildings in seismic-prone areas
on the anchoring of timber walls to foundations available strategies to prevent wood deterioration and on site installation problems
Abstract Experts are aware that the critical and until now unsolved problem of timber wall buildings lies in proper anchoring of the structure to foundations. Geometric inaccuracies and discrepancies between the concrete surface and the timber structure often lead to incorrect alignment of walls, which is normally solved with provisional and inaccurate solutions, in contrast with prefabrication. However, the most important issue is the compromised durability of timber due to rising dampness and fungicide attack, which are a result of inaccurate waterproofing as moisture is absorbed and trapped at the wall base. Difficulties in restoring such damages arise together with maintenance costs of the structures. This work provides an overview on the crucial problems that affect the anchoring of timber structures to foundations. Disadvantages of traditional techniques are presented and critically discussed. An innovative aluminium bottom rail designed for Cross-Laminated Timber, light-frame and Blockhaus technologies is presented, evidencing main structural properties and capacities in assuring timber durability and long-lasting fixing. This aluminium beam is made of an extruded profile with shape and size optimized for load-bearing capacity and lateral stability. Special grooves at both sides are designed to obtain fast and efficient fixing of shear-resisting plates and hold-downs. Main results from latest experimental campaign are given to characterize the system in terms of load-bearing capacity and case-study applications in newly-realized timber buildings are presented. Finally, a proposal for possible restoring intervention to replace the damaged timber at the base of the wall is hypothesized
- …