43 research outputs found
Targeted Molecular Imaging in Adrenal Disease—An Emerging Role for Metomidate PET-CT
Adrenal lesions present a significant diagnostic burden for both radiologists and endocrinologists, especially with the increasing number of adrenal 'incidentalomas' detected on modern computed tomography (CT) or magnetic resonance imaging (MRI). A key objective is the reliable distinction of benign disease from either primary adrenal malignancy (e.g., adrenocortical carcinoma or malignant forms of pheochromocytoma/paraganglioma (PPGL)) or metastases (e.g., bronchial, renal). Benign lesions may still be associated with adverse sequelae through autonomous hormone hypersecretion (e.g., primary aldosteronism, Cushing's syndrome, phaeochromocytoma). Here, identifying a causative lesion, or lateralising the disease to a single adrenal gland, is key to effective management, as unilateral adrenalectomy may offer the potential for curing conditions that are typically associated with significant excess morbidity and mortality. This review considers the evolving role of positron emission tomography (PET) imaging in addressing the limitations of traditional cross-sectional imaging and adjunctive techniques, such as venous sampling, in the management of adrenal disorders. We review the development of targeted molecular imaging to the adrenocortical enzymes CYP11B1 and CYP11B2 with different radiolabeled metomidate compounds. Particular consideration is given to iodo-metomidate PET tracers for the diagnosis and management of adrenocortical carcinoma, and the increasingly recognized utility of C-metomidate PET-CT in primary aldosteronism.NIHR Cambridge Biomedical Research Centr
Advances in the Imaging of Pituitary Tumors
© 2020 Elsevier Inc. In most patients with pituitary adenomas magnetic resonance imaging (MRI) is essential to guide effective decision-making. T1- and T2-weighted sequences allow the majority of adenomas to be readily identified. Supplementary MR sequences (e.g. FLAIR; MR angiography) may also help inform surgery. However, in some patients MRI findings are ‘negative’ or equivocal (e.g. with failure to reliably identify a microadenoma or to distinguish postoperative change from residual/recurrent disease). Molecular imaging [e.g. 11C-methionine PET/CT coregistered with volumetric MRI (Met-PET/MRCR)] may allow accurate localisation of the site of de novo or persistent disease to guide definitive treatment (e.g. surgery or radiosurgery)
Applying physical science techniques and CERN technology to an unsolved problem in radiation treatment for cancer: the multidisciplinary ‘VoxTox’ research programme
The VoxTox research programme has applied expertise from the physical sciences to the problem of radiotherapy toxicity, bringing together expertise from engineering, mathematics, high energy physics (including the Large Hadron Collider), medical physics and radiation oncology. In our initial cohort of 109 men treated with curative radiotherapy for prostate cancer, daily image guidance computed tomography (CT) scans have been used to calculate delivered dose to the rectum, as distinct from planned dose, using an automated approach. Clinical toxicity data have been collected, allowing us to address the hypothesis that delivered dose provides a better predictor of toxicity than planned dose.JES was supported by Cancer Research UK through the Cambridge Cancer Centre. NGB, ASP and MG are supported by the National Institute of Health Research Cambridge Biomedical Research Centre. KH, MR AMB, EW and SJB were supported by the VoxTox Research Programme, funded by Cancer Research UK. DJN is supported by Addenbrooke’s Charitable Trust and Cancer Research UK through the Cambridge Cancer Centre. FMB was supported by the Science and Technology Facilities Council. MPDS was part supported by the VoxTox Research Programme, funded by Cancer Research UK. RJ was part supported by the VoxTox Research Programme, funded by Cancer Research UK. LS is supported by the Armstrong Trust. XC was supported by the Isaac Newton Trust. CBS acknowledges support from the EPSRC Centre for Mathematical and Statistical Analysis of Multimodal Clinical Imaging, the Leverhulme Trust, the EU-RISE project CHiPS and the Cantab Capital Institute for the Mathematics of Information. NT was supported by a Gates-Cambridge Scholarship, funded by the Bill and Melinda Gates Foundation, PLY and SYKS by the Singapore Government
Mapping and linking supply- and demand-side measures in climate-smart agriculture. A review
Climate change and food security are two of humanity’s greatest challenges and are highly interlinked. On the one hand, climate change puts pressure on food security. On the other hand, farming significantly contributes to anthropogenic greenhouse gas emissions. This calls for climate-smart agriculture—agriculture that helps to mitigate and adapt to climate change. Climate-smart agriculture measures are diverse and include emission reductions, sink enhancements, and fossil fuel offsets for mitigation. Adaptation measures include technological advancements, adaptive farming practices, and financial management. Here, we review the potentials and trade-offs of climate-smart agricultural measures by producers and consumers. Our two main findings are as follows: (1) The benefits of measures are often site-dependent and differ according to agricultural practices (e.g., fertilizer use), environmental conditions (e.g., carbon sequestration potential), or the production and consumption of specific products (e.g., rice and meat). (2) Climate-smart agricultural measures on the supply side are likely to be insufficient or ineffective if not accompanied by changes in consumer behavior, as climate-smart agriculture will affect the supply of agricultural commodities and require changes on the demand side in response. Such linkages between demand and supply require simultaneous policy and market incentives. It, therefore, requires interdisciplinary cooperation to meet the twin challenge of climate change and food security. The link to consumer behavior is often neglected in research but regarded as an essential component of climate-smart agriculture. We argue for not solely focusing research and implementation on one-sided measures but designing good, site-specific combinations of both demand- and supply-side measures to use the potential of agriculture more effectively to mitigate and adapt to climate change
Diversity and Efficiency of Rhizobia Communities from Iron Mining Areas Using Cowpea as a Trap Plant
Modern imaging in Cushing's disease.
Funder: Wellcome Trust Institutional Strategic Support Fund, University of CambridgeManagement of Cushing's disease is informed by dedicated imaging of the sella and parasellar regions. Although magnetic resonance imaging (MRI) remains the investigation of choice, a significant proportion (30-50%) of corticotroph tumours are so small as to render MRI indeterminate or negative when using standard clinical sequences. In this context, alternative MR protocols [e.g. 3D gradient (recalled) echo, with acquisition of volumetric data] may allow detection of tumors that have not been previously visualized. The use of hybrid molecular imaging (e.g. 11C-methionine positron emission tomography coregistered with volumetric MRI) has also been proposed as an additional modality for localizing microadenomas
Recommended from our members
Novel imaging techniques in refractory pituitary adenomas.
Accurate localization of the site(s) of active disease is key to informing decision-making in the management of refractory pituitary adenomas when autonomous hormone secretion and/or continued tumor growth challenge conventional therapeutic approaches. In this context, the use of non-standard MR sequences, alternative post-acquisition image processing, or molecular (functional) imaging may provide valuable additional information to inform patient management
Recommended from our members
Novel imaging techniques in refractory pituitary adenomas
Funder: Erasmus+; doi: http://dx.doi.org/10.13039/501100010790Funder: Wellcome Trust Institutional Strategic Support Fund, University of CambridgeAccurate localization of the site(s) of active disease is key to informing decision-making in the management of refractory pituitary adenomas when autonomous hormone secretion and/or continued tumor growth challenge conventional therapeutic approaches. In this context, the use of non-standard MR sequences, alternative post-acquisition image processing, or molecular (functional) imaging may provide valuable additional information to inform patient management