23 research outputs found

    A Female Patient with Down Syndrome and Low-Penetrance Leber's Hereditary Optic Neuropathy.

    Get PDF
    We present the case of a 19-year-old female with a history of Down syndrome (DS) who was referred to our neuro-ophthalmology clinic for evaluation of Leber's hereditary optic neuropathy (LHON). The patient's family history was significant for a known G11778A mutation in a maternal relative, consistent with LHON. The patient was also positive for the G11778A mutation; however, the genotype demonstrated low penetrance in the pedigree, with only 1 out of 10 adult male offspring showing signs or symptoms of the disease. Mitochondrial mutations implicated in LHON have been shown to impair complex I of the electron transport chain and thereby reducing the effective generation of adenosine triphosphate and increasing the production of toxic reactive oxygen species. Although the partial or complete triplicate of chromosome 21 constitutes the etiology of DS, some of the pleiotropic phenotypes of the syndrome have been attributed to oxidative stress and mitochondrial dysfunction. Given the low penetrance of the mutation and the patient's sex, this case illustrates the possibility that the mitochondrial mutation demonstrated increased penetrance due to pre-existing mitochondrial dysfunction related to DS

    Angioarchitectural evolution of clival dural arteriovenous fistulas in two patients.

    Get PDF
    Dural arteriovenous fistulas (dAVFs) may present in a variety of ways, including as carotid-cavernous sinus fistulas. The ophthalmologic sequelae of carotid-cavernous sinus fistulas are known and recognizable, but less commonly seen is the rare clival fistula. Clival dAVFs may have a variety of potential anatomical configurations but are defined by the involvement of the venous plexus just overlying the bony clivus. Here we present two cases of clival dAVFs that most likely evolved from carotid-cavernous sinus fistulas

    The Role of Microglia in Diabetic Retinopathy

    Get PDF
    There is growing evidence that chronic inflammation plays a role in both the development and progression of diabetic retinopathy. There is also evidence that molecules produced as a result of hyperglycemia can activate microglia. However the exact contribution of microglia, the resident immune cells of the central nervous system, to retinal tissue damage during diabetes remains unclear. Current data suggest that dysregulated microglial responses are linked to their deleterious effects in several neurological diseases associated with chronic inflammation. As inflammatory cytokines and hyperglycemia disseminate through the diabetic retina, microglia can change to an activated state, increase in number, translocate through the retina, and themselves become the producers of inflammatory and apoptotic molecules or alternatively exert anti-inflammatory effects. In addition, microglial genetic variations may account for some of the individual differences commonly seen in patient’s susceptibility to diabetic retinopathy

    Autocrine and Paracrine Secretion of Vascular Endothelial Growth Factor in the Pre-Hypoxic Diabetic Retina

    Get PDF
    Vascular endothelial growth factor (VEGF) is well established as the main agent responsible for vascular leakage and angiogenesis in the diabetic retina. While VEGF can have positive effects on hyperglycemia stressed retinal tissues, it also plays a role in events progressing to the oxygen- stressed, i.e. hypoxic, diabetic retina. Some VEGF makes its way to the retina from systemic sources and some is produced locally within the eye. Hyperglycemia, oxidants, inflammation, and advanced glycation end-products are all stimulants to VEGF production, both in the hypoxic and the pre-hypoxic retina. Endothelial cells, pericytes, Müller cells, microglia, astrocytes, retinal pigment epithelium and neurons have all been known to produce VEGF at some point in retinal development or in disease. Excessive VEGF production in the early diabetic retina can lead to retinal exposure or mechanisms which exacerbate further damage. While Müller cells are likely the most significant producer of VEGF in the pre-hypoxic retina, other VEGF producing cells may also play a role due to their proximity to vessels or neurons. Study of the release of VEGF by retinal cells in hyperglycemia conditions, may help identify targets for early treatment and prevent the serious consequences of diabetic retinopathy

    The role of microglia in diabetic retinopathy

    Get PDF
    There is growing evidence that chronic inflammation plays a role in both the development and progression of diabetic retinopathy. There is also evidence that molecules produced as a result of hyperglycemia can activate microglia. However the exact contribution of microglia, the resident immune cells of the central nervous system, to retinal tissue damage during diabetes remains unclear. Current data suggest that dysregulated microglial responses are linked to their deleterious effects in several neurological diseases associated with chronic inflammation. As inflammatory cytokines and hyperglycemia disseminate through the diabetic retina, microglia can change to an activated state, increase in number, translocate through the retina, and themselves become the producers of inflammatory and apoptotic molecules or alternatively exert anti-inflammatory effects. In addition, microglial genetic variations may account for some of the individual differences commonly seen in patient's susceptibility to diabetic retinopathy

    A Method For Recognizing Colorblind Malingering

    No full text

    A Method For Recognizing Colorblind Malingering

    No full text
    Standard tests of colorblindness screen for organic disease. This new test attempts to recognize malingerers of colorblindness

    A Female Patient with Down Syndrome and Low-Penetrance Leber's Hereditary Optic Neuropathy

    No full text
    We present the case of a 19-year-old female with a history of Down syndrome (DS) who was referred to our neuro-ophthalmology clinic for evaluation of Leber's hereditary optic neuropathy (LHON). The patient's family history was significant for a known G11778A mutation in a maternal relative, consistent with LHON. The patient was also positive for the G11778A mutation; however, the genotype demonstrated low penetrance in the pedigree, with only 1 out of 10 adult male offspring showing signs or symptoms of the disease. Mitochondrial mutations implicated in LHON have been shown to impair complex I of the electron transport chain and thereby reducing the effective generation of adenosine triphosphate and increasing the production of toxic reactive oxygen species. Although the partial or complete triplicate of chromosome 21 constitutes the etiology of DS, some of the pleiotropic phenotypes of the syndrome have been attributed to oxidative stress and mitochondrial dysfunction. Given the low penetrance of the mutation and the patient's sex, this case illustrates the possibility that the mitochondrial mutation demonstrated increased penetrance due to pre-existing mitochondrial dysfunction related to DS

    A Female Patient with Down Syndrome and Low-Penetrance Leber's Hereditary Optic Neuropathy

    No full text
    We present the case of a 19-year-old female with a history of Down syndrome (DS) who was referred to our neuro-ophthalmology clinic for evaluation of Leber's hereditary optic neuropathy (LHON). The patient's family history was significant for a known G11778A mutation in a maternal relative, consistent with LHON. The patient was also positive for the G11778A mutation; however, the genotype demonstrated low penetrance in the pedigree, with only 1 out of 10 adult male offspring showing signs or symptoms of the disease. Mitochondrial mutations implicated in LHON have been shown to impair complex I of the electron transport chain and thereby reducing the effective generation of adenosine triphosphate and increasing the production of toxic reactive oxygen species. Although the partial or complete triplicate of chromosome 21 constitutes the etiology of DS, some of the pleiotropic phenotypes of the syndrome have been attributed to oxidative stress and mitochondrial dysfunction. Given the low penetrance of the mutation and the patient's sex, this case illustrates the possibility that the mitochondrial mutation demonstrated increased penetrance due to pre-existing mitochondrial dysfunction related to DS
    corecore