162 research outputs found

    A theoretical/experimental program to develop active optical pollution sensors: Quantitative remote Raman lidar measurements of pollutants from stationary sources

    Get PDF
    Typical pollutant gas concentrations at the stack exits of stationary sources can be estimated to be about 500 ppm under the present emission standards. Raman lidar has a number of advantages which makes it a valuable tool for remote measurements of these stack emissions. Tests of the Langley Research Center Raman lidar at a calibration tank indicate that night measurements of SO2 concentrations and stack opacity are possible. Accuracies of 10 percent are shown to be achievable from a distance of 300 m within 30 min integration times for 500 ppm SO2 at the stack exits. All possible interferences were examined quantitatively (except for the fluorescence of aerosols in actual stack emissions) and found to have negligible effect on the measurements. An early test at an instrumented stack is strongly recommended

    Diagnostics and control of wavenumber stability and purity of tunable diode lasers relevant to their use as local oscillators in heterodyne systems

    Get PDF
    Initial operation of the tunable diode lasers (TDL) showed that it was not possible to adjust the wavenumber to one selected a priori in the TDL tuning range. During operation, the operating point would change by 0.1/cm over the longer term with even larger changes occurring during some thermal cycles. Most changes during thermal cycling required using lower temperatures and higher currents to reach the former wavenumber (when it could be reached). In many cases, an operating point could be selected by changing TDL current and temperature to give both the desired wavenumber and most of the power in a single mode. The selection procedure had to be used after each thermal cycling. Wavenumber nonlinearities of about 10% over a 0.5 cm tuning range were observed. Diagnostics of the single mode selected by a grating monochromator showed wavenumber fine structure under certain operating conditions. The characteristics due to the TDL environment included short term wavenumber stability, the instrument lineshape function, and intermediate term wavenumber stability

    Researching reciprocal leadership: using the consciousness quotient inventory (CQ-i) as a pilot methodology to explore leadership with the context of a school–university partnership.

    Get PDF
    This article looks at the potential of using an online self-completing inventory that measures leadership consciousness awareness. The Consciousness Quotient inventory (CQ-i) has been developed to encourage leaders to be more conscious of their ability to be accountable and responsible for their leadership practice. The CQ-i as a method for researching leadership is piloted here between a university academic and a primary headteacher in the context of a school–university partnership. Pilot outcomes reveal that the inventory can be used as an evaluation of partnership work and ways of thinking about leadership on two levels: the personal and the partnership. The method is somewhat limited by a lack of distinctive criteria for personal domain statements and the absence of an overall profile outcome for the CQ score. Its strength lies in the way the outcomes of the inventory can be used as a starting point for personal reflection on leadership and as a vehicle for discussing a range of different ways of leadership working within different settings, such as school and university contexts.N/

    Inhibition of VCP preserves retinal structure and function in autosomal dominant retinal degeneration

    Get PDF
    Due to continuously high production rates of rhodopsin (RHO) and high metabolic activity, photoreceptor neurons are especially vulnerable to defects in proteostasis. A proline to histidine substitution at position 23 (P23H) leads to production of structurally misfolded RHO, causing the most common form of autosomal dominant Retinitis Pigmentosa (adRP) in North America. The AAA-ATPase valosin-containing protein (VCP) extracts misfolded proteins from the ER membrane for cytosolic degradation. Here, we provide the first evidence that inhibition of VCP activity rescues degenerating P23H rod cells and improves their functional properties in P23H transgenic rat and P23H knock-in mouse retinae, both in vitro and in vivo. This improvement correlates with the restoration of the physiological RHO localization to rod outer segments (OS) and properly-assembled OS disks. As a single intravitreal injection suffices to deliver a long-lasting benefit in vivo, we suggest VCP inhibition as a potential therapeutic strategy for adRP patients carrying mutations in the RHO gene

    Rational Design of Temperature-Sensitive Alleles Using Computational Structure Prediction

    Get PDF
    Temperature-sensitive (ts) mutations are mutations that exhibit a mutant phenotype at high or low temperatures and a wild-type phenotype at normal temperature. Temperature-sensitive mutants are valuable tools for geneticists, particularly in the study of essential genes. However, finding ts mutations typically relies on generating and screening many thousands of mutations, which is an expensive and labor-intensive process. Here we describe an in silico method that uses Rosetta and machine learning techniques to predict a highly accurate “top 5” list of ts mutations given the structure of a protein of interest. Rosetta is a protein structure prediction and design code, used here to model and score how proteins accommodate point mutations with side-chain and backbone movements. We show that integrating Rosetta relax-derived features with sequence-based features results in accurate temperature-sensitive mutation predictions

    Mobilising Knowledge through Global Partnerships to Support Research-informed Teaching: Five Models for Translational Research

    Get PDF
    Education Futures Collaboration Charity The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Improving the quality of teaching is of global concern: UNESCO’s Sustainable Development Goal (SDG) 4c in the Education 2030: Framework for Action calls for high quality teaching for all. The OECD challenges the education system to improve Knowledge Management. JET’s (2015) special issue: Translational Research (TR) and Knowledge Mobilisation in Teacher Education introduced the concept of ‘translational’ or ‘theory to practice’ research - well-established in medicine but not in education. Five TR models were subsequently developed by the MESH charity’s international network with organisations in South Africa, Bangladesh, Australia, Pakistan, UK. These distinct models engage 1) university staff and teachers 2) subject associations, 3) research units, 4) an international NGO working in crisis settings, 5) PhD tutors and students. Each model shares common features forming the MESH Translational Research methodology introduced in this article. A TR repository is part of the MESH knowledge mobilisation strategy giving teachers access to research summaries which, overtime, accumulate knowledge. TR publications called MESHGuides (www.meshguides.org) complement existing forms of publication. This article proposes the MESH TR methodology as one affordable and scalable solution to OECD and UNESCO’s challenges of keeping teachers up-to-date and making new knowledge accessible to teachers regardless of location

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    A Systems Approach Uncovers Restrictions for Signal Interactions Regulating Genome-wide Responses to Nutritional Cues in Arabidopsis

    Get PDF
    As sessile organisms, plants must cope with multiple and combined variations of signals in their environment. However, very few reports have studied the genome-wide effects of systematic signal combinations on gene expression. Here, we evaluate a high level of signal integration, by modeling genome-wide expression patterns under a factorial combination of carbon (C), light (L), and nitrogen (N) as binary factors in two organs (O), roots and leaves. Signal management is different between C, N, and L and in shoots and roots. For example, L is the major factor controlling gene expression in leaves. However, in roots there is no obvious prominent signal, and signal interaction is stronger. The major signal interaction events detected genome wide in Arabidopsis roots are deciphered and summarized in a comprehensive conceptual model. Surprisingly, global analysis of gene expression in response to C, N, L, and O revealed that the number of genes controlled by a signal is proportional to the magnitude of the gene expression changes elicited by the signal. These results uncovered a strong constraining structure in plant cell signaling pathways, which prompted us to propose the existence of a “code” of signal integration

    Comparative Microbial Modules Resource: Generation and Visualization of Multi-species Biclusters

    Get PDF
    The increasing abundance of large-scale, high-throughput datasets for many closely related organisms provides opportunities for comparative analysis via the simultaneous biclustering of datasets from multiple species. These analyses require a reformulation of how to organize multi-species datasets and visualize comparative genomics data analyses results. Recently, we developed a method, multi-species cMonkey, which integrates heterogeneous high-throughput datatypes from multiple species to identify conserved regulatory modules. Here we present an integrated data visualization system, built upon the Gaggle, enabling exploration of our method's results (available at http://meatwad.bio.nyu.edu/cmmr.html). The system can also be used to explore other comparative genomics datasets and outputs from other data analysis procedures – results from other multiple-species clustering programs or from independent clustering of different single-species datasets. We provide an example use of our system for two bacteria, Escherichia coli and Salmonella Typhimurium. We illustrate the use of our system by exploring conserved biclusters involved in nitrogen metabolism, uncovering a putative function for yjjI, a currently uncharacterized gene that we predict to be involved in nitrogen assimilation
    corecore