1,438 research outputs found
Magnetism and Charge ordering in TMTTF-PF organic crystals
Using a combination of Density Functional Theory, mean-field analysis and
exact diagonalization calculations we reveal the emergence of a dimerized
charge ordered state in TMTTF-PF organic crystal. The interplay between
charge and spin order leads to a rich phase diagram. Coexistence of charge
ordering with a structural dimerization results in a ferroelectric phase, which
has been observed experimentally. The tendency to the dimerization is
magnetically driven revealing TMTTF-PF as a multiferroic material
Dynamical singlets and correlation-assisted Peierls transition in VO2
A theory of the metal-insulator transition in vanadium dioxide from the
high-temperature rutile to the low- temperature monoclinic phase is proposed on
the basis of cluster dynamical mean field theory, in conjunction with the
density functional scheme. The interplay of strong electronic Coulomb
interactions and structural distortions, in particular the dimerization of
vanadium atoms in the low temperature phase, plays a crucial role. We find that
VO2 is not a conventional Mott insulator, but that the formation of dynamical
V-V singlet pairs due to strong Coulomb correlations is necessary to trigger
the opening of a Peierls gap.Comment: 5 page
Equilibrium Low Temperature Heat Capacity of the Spin Density Wave compound (TMTTF)2 Br: effect of a Magnetic Field
We have investigated the effect of the magnetic field (B) on the very
low-temperature equilibrium heat capacity ceq of the quasi-1 D organic compound
(TMTTF)2Br, characterized by a commensurate Spin Density Wave (SDW) ground
state. Below 1K, ceq is dominated by a Schottky-like contribution, very
sensitive to the experimental time scale, a property that we have previously
measured in numerous DW compounds. Under applied field (in the range 0.2- 7 T),
the equilibrium dynamics, and hence ceq extracted from the time constant,
increases enormously. For B = 2-3 T, ceq varies like B2, in agreement with a
magnetic Zeeman coupling. Another specific property, common to other
Charge/Spin density wave (DW) compounds, is the occurrence of metastable
branches in ceq, induced at very low temperature by the field exceeding a
critical value. These effects are discussed within a generalization to SDWs in
a magnetic field of the available Larkin-Ovchinnikov local model of strong
pinning. A limitation of the model when compared to experiments is pointed out.Comment: 10 pages, 11 figure
Friedel Oscillations and Charge-density Waves Pinning in Quasi-one-dimensional Conductors: An X-ray Access
We present an x-ray diffraction study of the Vanadium-doped blue bronze
K0.3(Mo0.972V0.028)O3. At low temperature, we have observed both an intensity
asymmetry of the +-2kF satellite reflections relative to the pure compound, and
a profile asymmetry of each satellite reflections. We show that the profile
asymmetry is due to Friedel oscillation around the V substituant and that the
intensity asymmetry is related to the charge density wave (CDW) pinning. These
two effects, intensity and profile asymmetries, gives for the first time access
to the local properties of CDW in disordered systems, including the pinning and
even the phase shift of FOs.Comment: 4 pages REVTEX, 5 figure
Self-organization of charge under pressure in the organic conductor (TMTSF)2ReO4
(TMTSF)2ReO4 presents a phase coexistence between two anion orderings defined
by their wave vectors q_2=(1/2,1/2,1/2) and q_3=(0,1/2,1/2) in a wide range of
pressure (8-11kbar) and temperature. From the determination of the anisotropy
of the conductivity and the superconducting transitions in this regime we were
able to extract the texture which results from a self-organization of the
orientations of the ReO4 anions in the sample. At the lowest pressures, the
metallic parts, related to the q_3 order, form droplets elongated along the
a-axis embedded in the semiconducting matrix associated with the q_2 order.
Above 10kbar, filaments along the a-axis extend from one end of the sample to
the other nearly up to the end of the coexistence regime. A mapping of the
system into an anisotropic Ising lattice is satisfactory to analyze the data.
satisfactory to analyze the data.Comment: 7 pages, 3 figures, EPL forma
Quantum Phase Transition in Pr2CuO4 to Collinear Spin State in Inclined Magnetic Field: A Neutron Diffraction Observation
In the external field slightly inclined to the - or y-axis of the
frustrated tetragonal atiferromagnet Pr2CuO4, a transition is discovered from
the phase with orthogonal antiferromagnetic spin subsystems along [1,0,0] and
[0,1,0] to the phase with the collinear spins. This phase is shown to be due to
the pseudodipolar interaction, and transforms into the spin-flop phase S perp H
asymptotically at very high field. The discovered phase transition holds at T=0
and is a quantum one, with the transition field being the critical point and
the angle between two subsystems being the order parameter
Electronic band structure and exchange coupling constants in ACr2X4 spinels
We present the results of band structure calculations for ACr2X4 (A=Zn, Cd,
Hg and X=O, S, Se) spinels. Effective exchange coupling constants between Cr
spins are determined by fitting the energy of spin spirals to a classical
Heisenberg model. The calculations reproduce the change of the sign of the
dominant nearest-neighbor exchange interaction J1 from antiferromagnetic in
oxides to ferromagnetic in sulfides and selenides. It is verified that the
ferromagnetic contribution to J1 is due to indirect hopping between Cr t2g and
eg states via X p states. Antiferromagnetic coupling between 3-rd Cr neighbors
is found to be important in all the ACr2X4 spinels studied, whereas other
interactions are much weaker. The results are compared to predictions based on
the Goodenough-Kanamori rules of superexchange.Comment: 15 pages, 10 figures, 3 table
Resonant inelastic x-ray scattering probes the electron-phonon coupling in the spin-liquid kappa-(BEDT-TTF)2Cu2(CN)3
Resonant inelastic x-ray scattering at the N K edge reveals clearly resolved
harmonics of the anion plane vibrations in the kappa-(BEDT-TTF)2Cu2(CN)3
spin-liquid insulator. Tuning the incoming light energy at the K edge of two
distinct N sites permits to excite different sets of phonon modes. Cyanide CN
stretching mode is selected at the edge of the ordered N sites which are more
strongly connected to the BEDT-TTF molecules, while positionally disordered N
sites show multi-mode excitation. Combining measurements with calculations on
an anion plane cluster permits to estimate the sitedependent electron-phonon
coupling of the modes related to nitrogen excitation
Competing phases in the high field phase diagram of (TMTSF)ClO
A model is presented for the high field phase diagram of (TMTSF)ClO,
taking into account the anion ordering, which splits the Fermi surface in two
bands. For strong enough field, the largest metal-SDW critical temperature
corresponds to the N=0 phase, which originates from two intraband nesting
processes. At lower temperature, the competition between these processes puts
at disadvantage the N=0 phase vs. the N=1 phase, which is due to interband
nesting. A first order transition takes then place from the N=0 to N=1 phase.
We ascribe to this effect the experimentally observed phase diagrams.Comment: 5 pages, 3 figures (to appear in Phys. Rev. Lett.
Effect of Inter-Site Repulsions on Magnetic Susceptibility of One-Dimensional Electron Systems at Quarter-Filling
The temperature dependence of the magnetic susceptibility, \chi (T), is
investigated for one-dimensional interacting electron systems at
quarter-filling within the Kadanoff-Wilson renormalization-group method.
The forward scattering on the same branch (the g_4-process) is examined
together with the backward (g_1) and forward (g_2) scattering amplitudes on
opposite branches.
In connection with lattice models, we show that \chi (T) is strongly enhanced
by the nearest-neighbor interaction, an enhancement that surpasses one of the
next-nearest-neighbor interaction.
A connection between our predictions for \chi (T) and experimental results
for \chi (T) in quasi-one-dimensional organic conductors is presented.Comment: 4 pages, 4 figures, to be published in Journal of the Physical
Society of Japan, vol. 74, No. 1
- …