830 research outputs found

    Evidence from d+Au measurements for final-state suppression of high pTp_T hadrons in Au+Au collisions at RHIC

    Full text link
    We report measurements of single-particle inclusive spectra and two-particle azimuthal distributions of charged hadrons at high transverse momentum (high pTp_T) in minimum bias and central d+Au collisions at sNN\sqrt{s_{NN}}=200 GeV. The inclusive yield is enhanced in d+Au collisions relative to binary-scaled p+p collisions, while the two-particle azimuthal distributions are very similar to those observed in p+p collisions. These results demonstrate that the strong suppression of the inclusive yield and back-to-back correlations at high pTp_T previously observed in central Au+Au collisions are due to final-state interactions with the dense medium generated in such collisions.Comment: Final journal version. Data tables for figures may be downloaded from the STAR home page: http://www.star.bnl.gov --> Publications --> Access to STAR published dat

    Transverse momentum and collision energy dependence of high pTp_{T} hadron suppression in Au+Au collisions at ultrarelativistic energies

    Get PDF
    We report high statistics measurements of inclusive charged hadron production in Au+Au and p+p collisions at \sqrtsNN=200 GeV. A large, approximately constant hadron suppression is observed in central Au+Au collisions for 5\lt\pT\lt12 GeV/c. The collision energy dependence of the yields and the centrality and \pT dependence of the suppression provide stringent constraints on theoretical models of suppression. Models incorporating initial-state gluon saturation or partonic energy loss in dense matter are largely consistent with observations. We observe no evidence of \pT-dependent suppression, which may be expected from models incorporating jet attentuation in cold nuclear matter or scattering of fragmentation hadrons.Comment: Final journal version. Data tables for figures may be downloaded from the STAR home page: http://www.star.bnl.gov --> Publications --> Access to STAR published dat

    Particle-type dependence of azimuthal anisotropy and nuclear modification of particle production in Au+Au collisions at s(NN)**(1/2) = 200-GeV

    Get PDF
    We present STAR measurements of the azimuthal anisotropy parameter v2v_2 and the binary-collision scaled centrality ratio RCPR_{CP} for kaons and lambdas (Λ+Λˉ\Lambda+\bar{\Lambda}) at mid-rapidity in Au+Au collisions at sNN=200\sqrt{s_{_{NN}}}=200 GeV. In combination, the v2v_2 and RCPR_{CP} particle-type dependencies contradict expectations from partonic energy loss followed by standard fragmentation in vacuum. We establish pT5p_T \approx 5 GeV/c as the value where the centrality dependent baryon enhancement ends. The KS0K_S^0 and Λ+Λˉ\Lambda+\bar{\Lambda} v2v_2 values are consistent with expectations of constituent-quark-number scaling from models of hadron fromation by parton coalescence or recombination.Comment: 6 pages, 4 figures, 1 table. As published in PRL on Feb. 2, 2004; Significant revisions have been made to the text and color has been added to plot

    Rapidity and centrality dependence of proton and antiproton production from 197Au + 197Au collisions at √SNN = 130 GeV

    Get PDF
    We report on the rapidity and centrality dependence of proton and antiproton transverse mass distributions from 197Au + 197Au collisions at sqrt[sNN ]=130 GeV as measured by the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). Our results are from the rapidity and transverse momentum range of |y| <0.5 and 0.35< pt <1.00 GeV/c . For both protons and antiprotons, transverse mass distributions become more convex from peripheral to central collisions demonstrating characteristics of collective expansion. The measured rapidity distributions and the mean transverse momenta versus rapidity are flat within |y| <0.5 . Comparisons of our data with results from model calculations indicate that in order to obtain a consistent picture of the proton (antiproton) yields and transverse mass distributions the possibility of prehadronic collective expansion may have to be taken into account

    Pion interferometry in Au+Au collisions at sqrt[sNN]=200GeV

    Get PDF
    We present a systematic analysis of two-pion interferometry in Au+Au collisions at sqrt[sNN]=200GeV using the STAR detector at Relativistic Heavy Ion Collider. We extract the Hanbury-Brown and Twiss radii and study their multiplicity, transverse momentum, and azimuthal angle dependence. The Gaussianness of the correlation function is studied. Estimates of the geometrical and dynamical structure of the freeze-out source are extracted by fits with blast-wave parametrizations. The expansion of the source and its relation with the initial energy density distribution is studied

    Pion-Xi correlations in Au-Au collisions at STAR

    Full text link
    We present pion-Xi correlation analysis in Au-Au collisions at sqrt(s_NN)= 200 GeV and sqrt(s_NN) = 62.4 GeV, performed using the STAR detector at RHIC. A Xi*(1530) resonance signal is observed for the first time in Au-Au collisions. Experimental data are compared with theoretical predictions. The strength of the Xi* peak is reproduced in the correlation function assuming that pions and Xis emerge from a system in collective expansion.Comment: To appear in the proceedings of 18th Nuclear Physics Division Conference of the EPS (NPDC18),Prague, 23.8.-29.8. 200

    Inclusive pi0 spectra at high transverse momentum in d-Au collisions at RHIC

    Full text link
    Preliminary results on inclusive neutral pion production in d-Au collisions at sqrt(s_NN) = 200 GeV in the pseudo-rapidity range 0<eta<1 are presented. The measurement is performed using the STAR Barrel Electromagnetic calorimeter (BEMC). In this paper, the analysis of the first BEMC hadron measurement is described and the results are compared with earlier RHIC findings. The pi0 invariant differential cross sections show good agreement with next-to-leading order (NLO) perturbative QCD calculations.Comment: 4 pages, 5 figures, 18th Nuclear Physics Division Conference of the EPS, Prague, submitted to Nucl. Phys.

    Correlations in STAR: interferometry and event structure

    Full text link
    STAR observes a complex picture of RHIC collisions where correlation effects of different origins -- initial state geometry, semi-hard scattering, hadronization, as well as final state interactions such as quantum intensity interference -- coexist. Presenting the measurements of flow, mini-jet deformation, modified hadronization, and the Hanbury Brown and Twiss effect, we trace the history of the system from the initial to the final state. The resulting picture is discussed in the context of identifying the relevant degrees of freedom and the likely equilibration mechanism.Comment: 8 pages, 6 figures, plenary talk at the 5th International Conference on Physics and Astrophysics of Quark Gluon Plasma, to appear in Journal of Physics G (http://www.iop.org

    Strangelet search at RHIC

    Full text link
    Two position sensitive Shower Maximum Detector (SMDs) for Zero-Degree Calorimeters (ZDCs) were installed by STAR before run 2004 at both upstream and downstream from the interaction point along the beam axis where particles with small rigidity are swept away by strong magnetic field. The ZDC-SMDs provides information about neutral energy deposition as a function of transverse position in ZDCs. We report the preliminary results of strangelet search from a triggered data-set sampling 100 million Au+Au collisions at top RHIC energy.Comment: Strange Quark Matter 2004 conference proceedin

    Pion interferometry in Au+Au collisions at sNN\sqrt{\mathrm{s}_{_{\mathrm{NN}}}} = 200 GeV

    Get PDF
    We present a systematic analysis of two-pion interferometry in Au+Au collisions at sNN\sqrt{s_{NN}} = 200 GeV using the STAR detector at RHIC. We extract the HBT radii and study their multiplicity, transverse momentum, and azimuthal angle dependence. The Gaussianess of the correlation function is studied. Estimates of the geometrical and dynamical structure of the freeze-out source are extracted by fits with blast wave parameterizations. The expansion of the source and its relation with the initial energy density distribution is studied.Comment: 21 pages, 30 figures. As published in Physics Review
    corecore