6,111 research outputs found
TLC determination of functionality in prepolymers
Application of thin-layer chromatographics provides rapid qualitative determination of functional distribution in experimental prepolymer. Functionality distribution is of fundamental importance for it determines; (1) manner in which given carboxyl-terminated prepolymer will cure and (2) physical properties of resulting product
Glass transition temperatures of liquid prepolymers obtained by thermal penetrometry
Thermal penetrometry is experimental technique for detecting temperature at which frozen prepolymer becomes soft enough to be pierced by weighted penetrometer needle; temperature at which this occurs is called penetration temperature. Apparatus used to obtain penetration temperatures can be set up largely from standard parts
Chemistry and Apparent Quality of Surface Water and Ground Water Associated with Coal Basins
Personnel of the Arkansas Mining and Mineral Resources Research Institute conducted preliminary investigations on the chemistry and quality of surface and ground water associated with 12 coal-bearing sub-basins in the Arkansas Valley coal field. The coal field is approximately 60 miles long and 33 miles wide but only in 12 areas coal is thick enough and has proper quality to be termed commercial. Both surface and underground sample sites were established in each of the sub-basins with some minor variations in four areas where not all types of sites could be located. Water was collected from 19 surface points and 19 underground points in the established areas. Both field and laboratory analyses were made and elemental contents are reported herein. In the main, the chemistry and water quality suggests that all water is suitable for agricultural and industrial uses. To obtain potable water, treatment must be made to reduce calcium, magnesium, sodium sulfate and iron. The mineral content of the water is due to its contact with coal-bearing zones and, as such, reflects the mineral content of the coal. However, it is recommended that additional studies on the petrography and geochemistry of the coal, overburden and underburden is in order. Also, it is recommended that at least one detailed study be made of one of the coal sub-basins where geologic parameters can be completely established with regard to hydrogeology. This report is an important first step in determining the character and quality of Arkansas coal which must be fully understood to fully utilize this important mineral resource
Recommended from our members
Understanding the Chlorine Isotopic Compositions of Apatites in Lunar Basalts
Why is timing of bird migration advancing when individuals are not?
Recent advances in spring arrival dates have been reported in many migratory species but the mechanism driving these advances is unknown. As population declines are most widely reported in species that are not advancing migration, there is an urgent need to identify the mechanisms facilitating and constraining these advances. Individual plasticity in timing of migration in response to changing climatic conditions is commonly proposed to drive these advances but plasticity in individual migratory timings is rarely observed. For a shorebird population that has significantly advanced migration in recent decades, we show that individual arrival dates are highly consistent between years, but that the arrival dates of new recruits to the population are significantly earlier now than in previous years. Several mechanisms could drive advances in recruit arrival, none of which require individual plasticity or rapid evolution of migration timings. In particular, advances in nest-laying dates could result in advanced recruit arrival, if benefits of early hatching facilitate early subsequent spring migration. This mechanism could also explain why arrival dates of short-distance migrants, which generally return to breeding sites earlier and have greater scope for advance laying, are advancing more rapidly than long-distance migrants
Recommended from our members
Characterization of mesostasis areas in mare basalts: constraining melt compositions from which apatite crystallizes
Crystallization of major silicate and oxide phases from basaltic melts produces late-stage liquids whose chemical compositions differ from the initial melt. These chemically evolved liquids crystallize phases in the interstitial mesostasis regions in lunar basaltic rocks. Enrichment of incompatible elements, including volatiles such as OH, F, Cl, is characteristic of these late-stage liquids and encourages growth of accessory phases including apatite [Ca5(PO4)2(F,Cl,OH)]. Apatite is the main volatile bearing crystalline phase in lunar rocks. It starts crystallizing after ~95% melt solidification in typical mare basalts, but could crystallize earlier, after ~85-90% solidification in KREEP basalts. Using the OH contents of apatites, several researchers have calculated water contents for parental magmas. These calculated parental magma water contents can then be used to estimate a range of values for water in the mantle source regions of mare basalts [e.g.,2-6]. Therefore, a better characterization of the mesostasis areas, and of the melts in which apatite forms, is paramount to gain further insights and constraints on water in the lunar interior, especially because important parameters such as partitioning of volatiles between late-stage melts and apatite remain poorly constrained
- …